
Axion Network
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: September 9th, 2021 - October 7th, 2021

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 6

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) FRONT-RUNNING ATTACK ON INITIALIZATION FUNCTIONS -

MEDIUM 15

Description 15

Code Location 16

Risk Level 20

Recommendation 20

Remediation Plan 20

3.2 (HAL-02) LACK OF INTEGER OVERFLOW PROTECTION - MEDIUM 21

Description 21

Code Location 21

Risk Level 22

Recommendation 22

Reference 22

Remediation Plan 22

3.3 (HAL-03) UNCHECKED TRANSFER - MEDIUM 23

1

Description 23

Code Location 23

Risk Level 25

Recommendation 25

Remediation Plan 25

3.4 (HAL-04) MISSING RE-ENTRANCY PROTECTION - LOW 26

Description 26

Code Location 26

Risk Level 27

Recommendation 28

Remediation Plan 28

3.5 (HAL-05) MULTIPLE CALLS MAY LEADS TO DENIAL OF SERVICE(DOS) -

LOW 29

Description 29

Code Location 29

Risk Level 30

Recommendation 31

Remediation Plan 31

3.6 (HAL-06) EXTERNAL FUNCTION CALLS WITHIN LOOP - LOW 32

Description 32

Code Location 32

Risk Level 33

Recommendation 33

Reference 33

Remediation Plan 34

3.7 (HAL-07) UNUSED RETURN - LOW 35

2

Description 35

Code Location 35

Risk Level 37

Recommendation 37

Remediation Plan 37

3.8 (HAL-08) DIVIDE BEFORE MULTIPLY - LOW 38

Description 38

Code Location 38

Risk Level 40

Recommendation 40

Remediation Plan 40

3.9 (HAL-09) MISSING ZERO-ADDRESS CHECK - LOW 42

Description 42

Code Location 42

Risk Level 44

Recommendation 44

Remediation Plan 44

3.10 (HAL-10) USAGE OF BLOCK-TIMESTAMP - LOW 45

Description 45

Code Location 45

Risk Level 48

Recommendation 49

Remediation Plan 49

3.11 (HAL-11) UNINITIALIZED VARIABLE - LOW 50

Description 50

3

Code Location 50

Risk Level 51

Recommendations 51

Remediation Plan 51

3.12 (HAL-12) USAGE OF STRICT-EQUALITIES - INFORMATIONAL 52

Description 52

Code Location 52

Risk Level 52

Recommendations 52

Remediation Plan 53

3.13 (HAL-13) PRAGMA TOO RECENT - INFORMATIONAL 54

Description 54

Code Location 54

Risk Level 54

Recommendations 55

Remediation Plan 55

3.14 (HAL-14) MISSING EVENTS EMITTING - INFORMATIONAL 56

Description 56

Code Location 56

Risk Level 58

Recommendations 58

Remediation Plan 58

3.15 (HAL-15) REDUNDANT BOOLEAN COMPARISON - INFORMATIONAL 59

Description 59

Code Location 59

Risk Level 63

4

Recommendations 63

Remediation Plan 63

3.16 (HAL-16) POSSIBLE MISUSE OF PUBLIC FUNCTIONS - INFORMATIONAL

64

Description 64

Code Location 64

Risk Level 65

Recommendation 65

Remediation Plan 65

4 AUTOMATED TESTING 66

4.1 STATIC ANALYSIS REPORT 67

Description 67

Results 67

4.2 AUTOMATED SECURITY SCAN 72

Description 72

Results 72

5

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 10/04/2021 Juned Ansari

0.2 Document Updates 10/05/2021 Juned Ansari

0.3 Document Updates 10/06/2021 Juned Ansari

0.4 Draft Review 10/06/2021 Gabi Urrutia

1.0 Remediation Plan 10/07/2021 Juned Ansari

1.1 Remediation Plan Review 10/07/2021 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Juned Ansari Halborn Juned.Ansari@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Juned.Ansari@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Axion Network engaged Halborn to conduct a security assessment on their

smart contracts v3 beginning on September 9th, 2021 and ending October

7th, 2021. Axion is an ethical, community-driven cryptocurrency that

rewards long-term investing with high-yield interest rates and weekly

dividends.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure development.

1.2 AUDIT SUMMARY

The team at Halborn was provided four weeks for the engagement and as-

signed a full time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit to achieve the following:

• Ensure that all Nameless Contract functions are intended.

• Identify potential security issues with the assets in scope.

In summary, Halborn identified several security risk that were mostly

addressed by Axion Network team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

8

EX
EC

UT
IV

E
OV

ER
VI

EW

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process,and implementation; automated testing techniques

help enhance coverage of the Axion Network contract solidity code and can

quickly identify items that do not follow security best practices. The

following phases and associated tools were used throughout the term of

the audit:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security in-

cident, and the IMPACT should an incident occur. This framework works for

communicating the characteristics and impacts of technology vulnerabili-

ties. It’s quantitative model ensures repeatable and accurate measurement

while enabling users to see the underlying vulnerability characteristics

that was used to generate the Risk scores. For every vulnerability, a

risk level will be calculated on a scale of 5 to 1 with 5 being the

highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE : axion-contracts-v3 github repository

The security assessment was scoped to the following smart contract:

Listing 1: axion-contracts-v3-main

1 contracts/abstracts/

2 contracts/libs/AxionSafeCast.sol

3 contracts/stake/

4 contracts/enums/

5 contracts/v2.1/

6 contracts/DataReader.sol

7 contracts/Token.sol

8 contracts/accelerator/

9 contracts/interfaces/

OUT-OF-SCOPE : External libraries and economics attacks

FIXED-COMMIT-ID : 1c837d204115ef0511e148b24c724695f0c04b74

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 3 8 5

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-05) (HAL-03)

(HAL-04)
(HAL-11)

(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)
(HAL-10)

(HAL-02)

(HAL-12)
(HAL-13)
(HAL-14)

(HAL-15)
(HAL-16)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - FRONT-RUNNING ATTACK ON
INITIALIZATION FUNCTIONS

Medium SOLVED - 10/06/2021

HAL02 - LACK OF INTEGER OVERFLOW
PROTECTION

Medium NOT APPLICABLE

HAL03 - UNCHECKED TRANSFER Medium SOLVED - 10/06/2021

HAL04 - MISSING RE-ENTRANCY
PROTECTION

Low SOLVED - 10/06/2021

HAL05 - MULTIPLE CALLS MAY LEADS TO
DENIAL OF SERVICE(DOS)

Low SOLVED - 10/06/2021

HAL06 - EXTERNAL FUNCTION CALLS
WITHIN LOOP

Low SOLVED - 10/06/2021

HAL07 - UNUSED RETURN Low
PARTIALLY SOLVED -

10/06/2021

HAL08 - DIVIDE BEFORE MULTIPLY Low NOT APPLICABLE

HAL09 - MISSING ZERO-ADDRESS CHECK Low RISK ACCEPTED

HAL10 - USAGE OF BLOCK-TIMESTAMP Low NOT APPLICABLE

HAL11 - UNINITIALIZED VARIABLE Low SOLVED - 10/06/2021

HAL12 - USAGE OF STRICT-EQUALITIES Informational NOT APPLICABLE

HAL13 - PRAGMA TOO RECENT Informational ACKNOWLEDGED

HAL14 - MISSING EVENTS EMITTING Informational SOLVED - 10/06/2021

HAL15 - REDUNDANT BOOLEAN
COMPARISON

Informational SOLVED - 10/06/2021

HAL16 - POSSIBLE MISUSE OF PUBLIC
FUNCTIONS

Informational SOLVED - 10/06/2021

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) FRONT-RUNNING ATTACK ON
INITIALIZATION FUNCTIONS - MEDIUM

Description:

The declaration of function initialize(address _manager, address

_migrator).. is used in almost all scope contracts. It is required a

call to the initialize function after deploying it to initialize the

manager, migrator, and external_caller_role roles. There is no require

checking within the initialize function. There are functions that can be

front-run, allowing an attacker to incorrectly initialize the contracts.

Attack scenario:

1. Deployed the contract from “0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2”

2. Calling initialize function from “0x617F2E2fD72FD9D5503197092aC168c91465E7f2”

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3. Call from owner address (“0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2”)

is denied after malicious initialization

Code Location:

Listing 2: VentureCapital.sol (Lines 147,148,149,150,152)

257 function initialize(address _manager , address _migrator)

public initializer {

258 _setupRole(MANAGER_ROLE , _manager);

259 _setupRole(MIGRATOR_ROLE , _migrator);

260

261 _setupRole(EXTERNAL_CALLER_ROLE , _manager);

262 _setupRole(EXTERNAL_CALLER_ROLE , _migrator);

263 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 3: Accelerator.sol (Lines 503,504)

500 function initialize(address _migrator , address _manager)

external initializer {

501 /** Setup roles and addresses */

502 _setupRole(MIGRATOR_ROLE , _migrator);

503 _setupRole(MANAGER_ROLE , _manager);

504 }

Listing 4: BPD.sol

116 function initialize(address _migrator , address _stakeManager)

external initializer {

117 _setupRole(MIGRATOR_ROLE , _migrator);

118 _setupRole(EXTERNAL_CALLER_ROLE , _stakeManager);

119 }

Listing 5: StakeBurner.sol

287 function initialize(address _manager , address _migrator)

external initializer {

288 _setupRole(MANAGER_ROLE , _manager);

289 _setupRole(MIGRATOR_ROLE , _migrator);

290 }

Listing 6: StakeMinter.sol

213 function initialize(address _manager , address _migrator)

external initializer {

214 _setupRole(MANAGER_ROLE , _manager);

215 _setupRole(MIGRATOR_ROLE , _migrator);

216 }

Listing 7: StakeReminter.sol

85 function initialize(address _manager , address _migrator)

external initializer {

86 _setupRole(MANAGER_ROLE , _manager);

87 _setupRole(MIGRATOR_ROLE , _migrator);

88 }

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 8: StakeToken.sol

153 function initialize(

154 address _manager ,

155 address _migrator ,

156 string memory name ,

157 string memory symbol

158) external initializer {

159 _setupRole(MANAGER_ROLE , _manager);

160 _setupRole(MIGRATOR_ROLE , _migrator);

161

162 enabled = true; // Initially Enabled

163 transferEnabled = false; // Initially disabled

164 __ERC721_init(name , symbol);

165 __ERC721Enumerable_init ();

166 }

Listing 9: StakeUpgrader.sol

151 function initialize(address _manager , address _migrator)

external initializer {

152 _setupRole(MANAGER_ROLE , _manager);

153 _setupRole(MIGRATOR_ROLE , _migrator);

154 }

Listing 10: StakeCustodian.sol

45 function initialize(

46 address _migrator ,

47 address _stakeMinter ,

48 address _stakeBurner ,

49 address _stakeUpgrader

50) external initializer {

51 _setupRole(MIGRATOR_ROLE , _migrator);

52 _setupRole(EXTERNAL_CALLER_ROLE , _stakeMinter);

53 _setupRole(EXTERNAL_CALLER_ROLE , _stakeBurner);

54 _setupRole(EXTERNAL_CALLER_ROLE , _stakeUpgrader);

55 }

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 11: StakeManager.sol

631 function initialize(address _manager , address _migrator)

external initializer {

632 _setupRole(MANAGER_ROLE , _manager);

633 _setupRole(MIGRATOR_ROLE , _migrator);

634 }

Listing 12: Token.sol

46 function initialize(

47 address _manager ,

48 address _migrator ,

49 string memory _name ,

50 string memory _symbol

51) public initializer {

52 _setupRole(MANAGER_ROLE , _manager);

53 _setupRole(MIGRATOR_ROLE , _migrator);

54 __ERC20_init(_name , _symbol);

55

56 /** I do not understand this */

57 swapIsOver = false;

58 }

Listing 13: DataReader.sol

46 function initialize(

47 address _manager ,

48 address _staking ,

49 address _stakingV1 ,

50 address _auction ,

51 address _auctionV1

52) public initializer {

53 _setupRole(MANAGER_ROLE , _manager);

54

55 staking = IStakingDataV2(_staking);

56 stakingV1 = IStakingV1(_stakingV1);

57 auction = IAuctionDataV2(_auction);

58 auctionV1 = IAuctionV1(_auctionV1);

59 }

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to declare a constructor instead of an initialize

function to set up roles at the time of deployment to mitigate the

issue. Otherwise, add a require statement to each initialize function

to verify that the function is called by the contract owner only, and

post verification roles should be setup. Otherwise, setting the owner

in the contract’s constructor to the msg.sender and adding the onlyOwner

modifier to all initializers would be enough for access control. Another

solution is using a factory pattern that will deploy and initialize the

contracts atomically to prevent front-running of the initialization.

Remediation Plan:

SOLVED: Values will be hardcoded by the Axion Network team.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) LACK OF INTEGER
OVERFLOW PROTECTION - MEDIUM

Description:

The overflow happens when an arithmetic operation reaches the maximum

size of a type. For instance in the VentureCapital.sol contract on

getTokenInterestEarned method, multiplication of contracts.stakingV2

.getTotalSharesOf(accountAddress)*tokenPricePerShare[tokenAddress] in

the return calculation on the interest earned by an address for a

specific dividend token may end up overflowing the integer. In computer

programming, an integer overflow occurs when an arithmetic operation

attempts to create a numeric value that is outside of the range that can

be represented with a given number of bits -- either larger than the

maximum or lower than the minimum re-presentable value.

Code Location:

Listing 14: VentureCapital.sol (Lines 310,311)

303 function getTokenInterestEarned(address accountAddress ,

address tokenAddress)

304 external

305 view

306 returns (uint256)

307 {

308 if (isVcaRegistered[accountAddress] == false) {

309 return

310 ((contracts.stakingV2.getTotalSharesOf(

accountAddress) *

311 tokenPricePerShare[tokenAddress]) -

312 contracts.stakingV2.getDeductBalances(

accountAddress , tokenAddress)) / 1e36;

313 }

314

315 return getTokenInterestEarnedInternal(accountAddress ,

tokenAddress);

316 }

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Currently not all the smart contracts and the operations within them

are using the SafeMath library which makes some operations vulnerable

to overflows/underflows. It is recommended to use the SafeMath library

for arithmetic operations consistently throughout ALL the mathematical

operations in the smart contract system.

Reference:

Ethereum Smart Contract Best Practices - Integer Overflow and Underflow

Remediation Plan:

NOT APPLICABLE: The Axion Network team claims that due to their use of

Pragma > 0.8.0 safe math is not necessary, the run time will fail if

there is an overflow.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://consensys.github.io/smart-contract-best-practices/known_attacks/#integer-overflow-and-underflow

3.3 (HAL-03) UNCHECKED TRANSFER -
MEDIUM

Description:

In contract Token.sol, StakeManager.sol, VentureCapital.sol,

Accelerator.sol, and StakingV21.sol the return value of some external

transfer/transferFrom calls are not checked. Several tokens do not

revert in case of failure and return false. If one of these tokens is

used, a deposit would not revert if the transfer fails, and an attacker

could deposit tokens for free.

Code Location:

Listing 15: Token.sol (Lines 121)

116 function recovery(

117 address recoverFor ,

118 address tokenToRecover ,

119 uint256 amount

120) external onlyMigrator {

121 IERC20(tokenToRecover).transfer(recoverFor , amount);

122 }

123 }

Listing 16: StakeManager.sol (Lines 504,505,506,507)

502 function getTodaysInterest () internal returns (uint256) {

503 uint256 amountTokenInDay = IERC20Upgradeable(contracts.

token).balanceOf(address(this));

504 IERC20Upgradeable(contracts.token).transfer(

505 0x000000000000000000000000000000000000dEaD ,

506 amountTokenInDay

507);

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 17: VentureCapital.sol (Lines 136)

135 if (tokenAddress != address (0

xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) {

136 IERC20Upgradeable(tokenAddress).transfer(to,

tokenInterestEarned);

137 } else {

138 to.transfer(tokenInterestEarned);

139 }

Listing 18: VentureCapital.sol (Lines 147,148,149,150)

144 function withdrawOriginDivTokens(address tokenAddress)

external onlyExternalCaller {

145 /** 0xFF ... is our ethereum placeholder address */

146 if (tokenAddress != address (0

xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) {

147 IERC20Upgradeable(tokenAddress).transfer(

148 msg.sender ,

149 originWithdrawableTokenAmounts[tokenAddress]

150);

151 } else {

Listing 19: Accelerator.sol (Lines 193)

192 /** Transfer tokens to contract */

193 IERC20(_token).transferFrom(msg.sender , address(this),

_amount);

Listing 20: Accelerator.sol (Lines 222)

221 //** Transfer tokens to Manager */

222 IERC20(_token).transfer(recipient , _recipientAmount);

Listing 21: StakingV21.sol (Lines 116,123)

111 function transferTokens(address vcAuction , address

stakeManager) external onlyMigrator {

112 for (uint8 i = 0; i < divTokens.length (); i++) {

113 if (divTokens.at(i) != address (0

xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) {

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

114 IERC20Upgradeable token = IERC20Upgradeable(

divTokens.at(i));

115

116 token.transfer(vcAuction , token.balanceOf(address(

this)));

117 } else {

118 payable(vcAuction).transfer(address(this).balance)

;

119 }

120 }

121

122 IERC20Upgradeable axn = IERC20Upgradeable(addresses.

mainToken);

123 axn.transfer(stakeManager , axn.balanceOf(address(this)));

124 }

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to use SafeERC20, or ensure that the

transfer/transferFrom return value is checked.

Remediation Plan:

SOLVED: The Axion Network team solved the issue by using SafeERC20

implementation and added the safetransfer function to the code.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) MISSING RE-ENTRANCY
PROTECTION - LOW

Description:

It was identified that axion-contracts-v3 are missing nonReentrant

guard. In VentureCapital.sol, function withdrawOriginDivTokens,

contract StakeReminter.sol function remintStakeInternal, and contract

StakeMinter.so function convertToNft are missing nonReentrant guard.

Also, in these functions, external calls are called before all state

changes are resolved, and read/write to persistent state following

external call, making it vulnerable to a Reentrancy attack.

Although administrative restrictions are imposed but to protect against

cross-function reentrancy attacks, it may be necessary to use a mutex.

By using this lock, an attacker can no longer exploit the function

with a recursive call. OpenZeppelin has it’s own mutex implementation

called ReentrancyGuard which provides a modifier to any function called

“nonReentrant” that guards the function with a mutex against the

Reentrancy attacks.

Code Location:

Listing 22: VentureCapital.sol (Lines 147,148,149,150,152)

144 function withdrawOriginDivTokens(address tokenAddress)

external onlyExternalCaller {

145 /** 0xFF ... is our ethereum placeholder address */

146 if (tokenAddress != address (0

xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) {

147 IERC20Upgradeable(tokenAddress).transfer(

148 msg.sender ,

149 originWithdrawableTokenAmounts[tokenAddress]

150);

151 } else {

152 payable(msg.sender).transfer(

originWithdrawableTokenAmounts[tokenAddress]);

153 }

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

154

155 originWithdrawableTokenAmounts[tokenAddress] = 0;

156 }

Listing 23: StakeReminter.sol (Lines 80,81)

71 function remintStakeInternal(

72 uint256 payout ,

73 uint256 topup ,

74 uint256 stakingDays

75) internal {

76 if (topup != 0) {

77 payout = payout + topup;

78 }

79

80 contracts.token.burn(msg.sender , payout); // Burn the

payout amount before restaking

81 contracts.stakeMinter.externalStake(payout , stakingDays ,

msg.sender);

82 }

Listing 24: StakeMinter.sol (Lines 100)

94 function convertToNft(uint256 stakeId) external {

95 require(

96 contracts.stakeCustodian.removeStake(msg.sender ,

stakeId),

97 'STAKE MINTER: Not owner of stake or already converted

.'

98);

99

100 contracts.stakeToken.mint(msg.sender , stakeId); // 120k

101 }

Risk Level:

Likelihood - 1

Impact - 3

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Change the code to follow the checks-effects-interactions pattern and use

ReentrancyGuard through the nonReentrant modifier.

Remediation Plan:

SOLVED: The Axion Network team claims that

- Listing 22: This code no longer exists in their not-backwards branch.

- Listing 23: Before calling external stake they burn the users token,

thus re-entrancy would not benefit a hacker.

- Listing 24: This would result in reminting the same stake, but

removeStake is called first, the stake would not exist thus re-entrancy

should not be a problem.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) MULTIPLE CALLS MAY
LEADS TO DENIAL OF SERVICE(DOS) -
LOW

Description:

In contract StakeMinter.sol, StakeReminter.sol, and VentureCapital.sol

multiple calls are executed in the same transaction. This call is executed

following another call within the same transaction. It is possible that

the call never gets executed if a prior call fails permanently and it may

leads to DOS. This might be caused intentionally by a malicious user.

Code Location:

Listing 25: VentureCapital.sol (Lines 310)

303 function getTokenInterestEarned(address accountAddress ,

address tokenAddress)

304 external

305 view

306 returns (uint256)

307 {

308 if (isVcaRegistered[accountAddress] == false) {

309 return

310 ((contracts.stakingV2.getTotalSharesOf(

accountAddress) *

311 tokenPricePerShare[tokenAddress]) -

312 contracts.stakingV2.getDeductBalances(

accountAddress , tokenAddress)) / 1e36;

313 }

314

315 return getTokenInterestEarnedInternal(accountAddress ,

tokenAddress);

316 }

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 26: StakeMinter.sol (Lines 100)

94 function convertToNft(uint256 stakeId) external {

95 require(

96 contracts.stakeCustodian.removeStake(msg.sender ,

stakeId),

97 'STAKE MINTER: Not owner of stake or already converted

.'

98);

99

100 contracts.stakeToken.mint(msg.sender , stakeId); // 120k

101 }

Listing 27: StakeReminter.sol (Lines 46)

42 uint256 end = contracts.stakeManager.getStakeEnd(stakeId);

43

44 require(end != 0 && end <= block.timestamp , 'RESTAKER:

Stake not mature or not set.');

45

46 uint256 payout = contracts.stakeBurner.externalBurnStake(

stakeId , msg.sender);

47

48 remintStakeInternal(payout , topup , stakingDays);

Listing 28: StakeReminter.sol (Lines 80,81)

76 if (topup != 0) {

77 payout = payout + topup;

78 }

79

80 contracts.token.burn(msg.sender , payout); // Burn the

payout amount before restaking

81 contracts.stakeMinter.externalStake(payout , stakingDays ,

msg.sender);

82 }

Risk Level:

Likelihood - 1

Impact - 4

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

If possible, Refactor the code such that each transaction only executes

one external call or make sure that all users can be trusted (i.e. they’re

part of your own codebase).

Remediation Plan:

SOLVED: The Axion Network team removed the code in the new branch.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) EXTERNAL FUNCTION
CALLS WITHIN LOOP - LOW

Description:

Calls inside a loop increase Gas usage or might lead to a denial-of-service

attack. In one of the functions discovered there is a for loop on variable

i that iterates up to the divTokens and v2DivTokens array length. If this

integer is evaluated at extremely large numbers this can cause a DoS.

Code Location:

Listing 29: VentureCapital.sol (Lines 73,74,75,76)

57 function ensureIsVcaRegisteredInternal(address staker)

internal {

58 if (isVcaRegistered[staker] == false) {

59 if (contracts.stakingV2.getIsVCARegistered(staker) ==

false) {

60 uint256 totalShares = contracts.stakingV2.

resolveTotalSharesOf(staker);

61

62 totalSharesOf[staker] = totalShares;

63 contracts.stakeManager.addTotalVcaRegisteredShares

(totalShares);

64

65 for (uint256 i = 0; i < divTokens.length (); i++) {

66 deductBalances[staker][divTokens.at(i)] = (

totalShares *

67 tokenPricePerShare[divTokens.at(i)])

68 .toInt256 ();

69 }

70 } else {

71 totalSharesOf[staker] = contracts.stakingV2.

getTotalSharesOf(staker);

72 for (uint256 i = 0; i < divTokens.length (); i++) {

73 deductBalances[staker][divTokens.at(i)] =

contracts

74 .stakingV2

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

75 .getDeductBalances(staker , divTokens.at(i)

)

76 .toInt256 ();

77 }

78 }

79

80 isVcaRegistered[staker] = true;

81 }

82 }

Listing 30: VentureCapital.sol (Lines 286,287,288)

282 address [] memory v2DivTokens = contracts.stakingV2.

getDivTokens ();

283

284 for (uint256 i = 0; i < v2DivTokens.length; i++) {

285 divTokens.add(v2DivTokens[i]);

286 tokenPricePerShare[v2DivTokens[i]] = contracts.

stakingV2.getTokenPricePerShare(

287 v2DivTokens[i]

288);

289 }

290 }

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

If possible, use pull over push strategy for external calls.

Reference:

External Calls Recommendation

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://consensys.github.io/smart-contract-best-practices/recommendations/#favor-pull-over-push-for-external-calls

Remediation Plan:

SOLVED: The Axion Network team removed the code in the new branch.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) UNUSED RETURN - LOW

Description:

The return value of an external call is not stored in a local or state

variable. In contract StakeBurner.sol, StakeMinter.sol, StakeUpgrader.

sol, VentureCapital.sol, Accelerator.sol, and StakingV21.sol, there are

instances where external methods are being called and return value are

being ignored.

Code Location:

Listing 31: StakeBurner.sol (Lines 196)

195 // Add to stake custodian as the v1 or v2 stake is now a

v3 stake that has been withdrawn

196 contracts.stakeCustodian.addStake(staker , sessionId);

197

198 return payout;

199 }

Listing 32: StakeMinter.sol (Lines 84,85,86,87)

79 function stakeInternal(

80 uint256 amount ,

81 uint256 stakingDays ,

82 address staker

83) internal {

84 contracts.stakeCustodian.addStake(

85 staker ,

86 contracts.stakeManager.createStake(staker , amount ,

stakingDays)

87);

88 }

Listing 33: StakeUpgrader.sol (Lines 112)

110 })

111);

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

112 contracts.stakeCustodian.addStake(msg.sender , sessionId);

113 }

Listing 34: VentureCapital.sol (Lines 253)

252 function addDivToken(address tokenAddress) external override

onlyExternalCaller {

253 divTokens.add(tokenAddress);

254 }

Listing 35: VentureCapital.sol (Lines 285)

284 for (uint256 i = 0; i < v2DivTokens.length; i++) {

285 divTokens.add(v2DivTokens[i]);

286 tokenPricePerShare[v2DivTokens[i]] = contracts.

stakingV2.getTokenPricePerShare(

287 v2DivTokens[i]

288);

289 }

290 }

Listing 36: Accelerator.sol (Lines 268)

266 /** Check allowance */

267 if (IERC20(_tokenInAddress).allowance(address(this),

uniswap) < 2**255) {

268 IERC20(_tokenInAddress).approve(uniswap , 2**255);

269 }

Listing 37: StakingV21.sol (Lines 118)

113 if (divTokens.at(i) != address (0

xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) {

114 IERC20Upgradeable token = IERC20Upgradeable(

divTokens.at(i));

115

116 token.transfer(vcAuction , token.balanceOf(address(

this)));

117 } else {

118 payable(vcAuction).transfer(address(this).balance)

;

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

119 }

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Ensure that all the return values of the function calls are used. Add

return value check to avoid unexpected crash of the contract. Return

value check will help in handling the exceptions better way.

Remediation Plan:

PARTIALLY SOLVED: The Axion Network team solved the issue of Listing

32, and accepts the risk of Listing 34 and Listing 36. Further, Axion

Network team claims that Listing 31, Listing 35 and Listing 31 only

affects their backwards compatibility, issues listed without backwards

compatibility do not apply. Backwards compatibility has been removed in

the not-backwards branch.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) DIVIDE BEFORE
MULTIPLY - LOW

Description:

Solidity integer division might truncate. As a result, the loss of

precision can sometimes be avoided by multiplying before division,

although the manual implementation of the precision/decimal calculation

is being taken care of by the developer. In this audit, there are

multiple instances found where division is being performed before

multiplication operation in contract file.

Code Location:

Listing 38: BPD.sol (Lines 89)

88 for (uint256 i = bpdInterval [0]; i < bpdInterval [1]; i++)

{

89 bpdAmount += (shares / bpdShares[i]) * (uint256(

bpdPools[i]) * 1e8); // x 1e8 since we have one

decimal

90 }

Listing 39: StakeManager.sol (Lines 199,200,201,202)

119 addToGlobalTotals(

120 newAmount - (stakeUpgrade.amount / 1e12) * 1e12 ,

121 newShares - (stakeUpgrade.shares / 1e12) * 1e12

122);

Listing 40: StakeManager.sol (Lines 240)

539 uint256 shares = (numerator * 1e18) / denominator;

540 return (shares / 1e12) * 1e12;

541 }

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 41: StakeManager.sol (Lines 528,529,530,537,538,539,540,541)

525 function updateShareRate(uint256 _payout) internal {

526 uint256 currentTokenTotalSupply = contracts.token.

totalSupply (); // 718485214285714285714285714

527

528 uint256 growthFactor =

529 (_payout * 1e18) /

530 (currentTokenTotalSupply + (uint256(statFields.

totalStakedAmount) * 1e12) + 1); //we calculate

the total AXN supply as circulating + staked

531

532 if (settings.shareRateScalingFactor == 0) {

533 //use a shareRateScalingFactor which can be set in

order to tune the speed of shareRate increase

534 settings.shareRateScalingFactor = 1e18;

535 }

536

537 interestFields.shareRate = (

538 ((uint256(interestFields.shareRate) *

539 (1e36 + (uint256(settings.shareRateScalingFactor)

* growthFactor))) / 1e36)

540)

541 .toUint128 (); //1e18 used for precision.

542 }

Listing 42: Accelerator.sol (Lines 304,305,320)

303 //** Add additional axion if stake length is greater then

1year */

304 uint256 payout = (100 * _axionBought) / splitAmounts [0];

305 payout = payout + (payout * baseBonus) / 100;

306 if (_days >= bonusStartDays && bought[_currentDay] <

maxBoughtPerDay) {

307 // Get amount for sale left

308 uint256 payoutWithBonus = maxBoughtPerDay - bought[

_currentDay];

309 // Add to payout

310 bought[_currentDay] += payout;

311 if (payout > payoutWithBonus) {

312 uint256 payoutWithoutBonus = payout -

payoutWithBonus;

313

314 payout =

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

315 (payoutWithBonus +

316 (payoutWithBonus * ((_days /

bonusStartDays) + bonusStartPercent)) /

317 100) +

318 payoutWithoutBonus;

319 } else {

320 payout = payout + (payout * ((_days /

bonusStartDays) + bonusStartPercent)) / 100; //

multiply by percent divide by 100

321 }

322 } else {

323 //** If not returned above add to bought and return

payout. */

324 bought[_currentDay] += payout;

325 }

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Consider doing multiplication operation before division to prevail

precision in the values in non floating data type. It is recommended to

use SafeMath.sol.

Remediation Plan:

NOT APPLICABLE: The Axion Network team accepts the risk of Listing 42

and claims that they remove precision to allow for their stakes to be a

single word struct. Further, Axion Network team claims

- Listing 38: BPD Shares have 0 decimal precision

- Listing 39: Amount and shares have 6 decimal precision

- Listing 40: Shares have 6 decimal precision

- Listing 41: only affects their backwards compatibility, issues listed

without backwards compatibility do not apply. Backwards compatibility

has been removed in the not-backwards branch.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) MISSING ZERO-ADDRESS
CHECK - LOW

Description:

There are multiple instances found where Address validation is missing.

Lack of zero address validation has been found when assigning user

supplied address values to state variables directly. In Accelerator.sol

contract function setRecipient lacks a zero-check on _recipient, function

setToken lacks a zero-check on _token, function setVentureCapital lacks a

zero-check on _ventureCapital, function setStaking lacks a zero-check on

_staking, function setStakeManager lacks a zero-check on _stakeManager

, and function startAddresses lacks a zero-check on _staking, _axion,

_token, _uniswap and _recipient. In StakingV21.sol contract function

transferTokens lacks zero address check on payable(vcAuction).transfer(

address(this).balance).

Code Location:

Listing 43: Accelerator.sol (Lines 448)

447 function setRecipient(address payable _recipient) external

onlyManager {

448 recipient = _recipient;

449 }

Listing 44: Accelerator.sol (Lines 462)

461 function setToken(address _token) external onlyManager {

462 token = _token;

463 IVentureCapital(ventureCapital).addDivToken(_token);

464 }

Listing 45: Accelerator.sol (Lines 470)

469 function setVentureCapital(address _ventureCapital) external

onlyManager {

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

470 ventureCapital = _ventureCapital;

471 }

Listing 46: Accelerator.sol (Lines 477)

476 function setStaking(address _staking) external onlyManager {

477 staking = _staking;

478 }

Listing 47: Accelerator.sol (Lines 484)

484 function setStakeManager(address _stakeManager) external

onlyManager {

485 stakeManager = _stakeManager;

486 }

Listing 48: Accelerator.sol (Lines 513,514,515,516,517)

506 function startAddresses(

507 address _staking ,

508 address _axion ,

509 address _token ,

510 address payable _uniswap ,

511 address payable _recipient

512) external onlyMigrator {

513 staking = _staking;

514 axion = _axion;

515 token = _token;

516 uniswap = _uniswap;

517 recipient = _recipient;

518 }

Listing 49: StakingV21.sol (Lines 118)

111 function transferTokens(address vcAuction , address

stakeManager) external onlyMigrator {

112 for (uint8 i = 0; i < divTokens.length (); i++) {

113 if (divTokens.at(i) != address (0

xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) {

114 IERC20Upgradeable token = IERC20Upgradeable(

divTokens.at(i));

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

115

116 token.transfer(vcAuction , token.balanceOf(address(

this)));

117 } else {

118 payable(vcAuction).transfer(address(this).balance)

;

119 }

120 }

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Although administrative restrictions are imposed to this function due to

the OpenZeppelin RBAC it is better to add proper address validation when

assigning a value to a variable from user supplied inputs.

Remediation Plan:

RISK ACCEPTED: The Axion Network team accepts the risk.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) USAGE OF
BLOCK-TIMESTAMP - LOW

Description:

During a manual review, usage of block.timestamp in StakeBurner.sol,

StakeManager.sol, StakeReminter.sol, and StakingV21.sol were observed.

The contract developers should be aware that this does not mean current

time. now is an alias for block.timestamp. The value of block.timestamp

can be influenced by miners to a certain degree, so the testers should be

warned that this may have some risk if miners collude on time manipulation

to influence the price oracles. Miners can influence the timestamp by a

tolerance of 900 seconds.

Code Location:

Listing 50: StakeBurner.sol (Lines 151,152,153,154)

151 require(

152 end != 0 && end <= block.timestamp ,

153 'STAKE BURNER: stake not mature or not set.'

154);

155 }

Listing 51: StakeBurner.sol (Lines 168,169,170,171)

168 require(

169 end != 0 && end <= block.timestamp ,

170 'STAKE BURNER: stake not mature or not set.'

171);

172 }

Listing 52: StakeBurner.sol (Lines 220)

220 if (stakingDays > daysStaked) {

221 uint256 payOutAmount = (amountAndInterest *

secondsStaked) / stakingSeconds;

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 53: StakeBurner.sol (Lines 227)

227 } else if (daysStaked < stakingDays + 14) {

228 return (amountAndInterest , 0);

Listing 54: StakeBurner.sol (Lines 230)

230 } else if (daysStaked < stakingDays + 714) {

231 return (amountAndInterest , 0);

Listing 55: StakeBurner.sol (Lines 279)

279 if (payout != 0) {

280 contracts.token.mint(staker , payout);

Listing 56: StakeBurner.sol (Lines 269,270,271,272,273)

269 interest += contracts.bpd.getBpdAmount(

270 shares ,

271 start ,

272 block.timestamp < intendedEnd ? block.timestamp :

intendedEnd

273);

274 }

Listing 57: StakeManager.sol (Lines 179,180,181,182)

179 require(

180 newShares > stakeUpgrade.shares ,

181 'STAKING: New shares are not greater then previous

shares '

182);

183

Listing 58: StakeManager.sol (Lines 169,170,171,172,173)

169 newAmount += contracts.bpd.getBpdAmount(

170 stakeUpgrade.shares ,

171 stakeUpgrade.start ,

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

172 block.timestamp < intendedEnd ? block.timestamp :

intendedEnd

173);

174 }

Listing 59: StakeManager.sol (Lines 269)

269 if (block.timestamp >= interestFields.

nextAddInterestTimestamp) addDailyInterest ();

270

Listing 60: StakeManager.sol (Lines 364)

364 if (block.timestamp >= interestFields.

nextAddInterestTimestamp) addDailyInterest ();

365

Listing 61: StakeManager.sol (Lines 414)

414 if (interestPerShare.length != 0) {

415 lastInterest = interestPerShare[

Listing 62: StakeManager.sol (Lines 466,467,468,469)

466 require(

467 block.timestamp >= interestFields.

nextAddInterestTimestamp ,

468 'Staking: Too early to add interest.'

469);

470 uint256 todaysSharePayout; // free

Listing 63: StakeManager.sol (Lines 472)

472 if (statFields.sharesTotalSupply == 0) {

473 statFields.sharesTotalSupply = 1e6;

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 64: StakeReminter.sol (Lines 44)

44 require(end != 0 && end <= block.timestamp , 'RESTAKER:

Stake not mature or not set.');

Listing 65: StakingV21.sol (Lines 256,263,266)

243 function getAmountOutAndPenalty(

244 uint256 amount ,

245 uint256 start ,

246 uint256 end ,

247 uint256 stakingInterest

248) public view returns (uint256 , uint256) {

249 uint256 stakingSeconds = end.sub(start);

250 uint256 stakingDays = stakingSeconds.div(stepTimestamp);

251 uint256 secondsStaked = block.timestamp.sub(start);

252 uint256 daysStaked = secondsStaked.div(stepTimestamp);

253 uint256 amountAndInterest = amount.add(stakingInterest);

254

255 // Early

256 if (stakingDays > daysStaked) {

257 uint256 payOutAmount = amountAndInterest.mul(

secondsStaked).div(stakingSeconds);

258

259 uint256 earlyUnstakePenalty = amountAndInterest.sub(

payOutAmount);

260

261 return (payOutAmount , earlyUnstakePenalty);

262 // In time

263 } else if (daysStaked < stakingDays.add (14)) {

264 return (amountAndInterest , 0);

265 // Late

266 } else if (daysStaked < stakingDays.add (714)) {

267 return (amountAndInterest , 0);

Risk Level:

Likelihood - 2

Impact - 3

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Use block.number instead of block.timestamp or now to reduce the risk of

MEV attacks. Check if the timescale of the project occurs across years,

days and months rather than seconds. If possible, it is recommended to

use Oracles.

Remediation Plan:

NOT APPLICABLE: The Axion Network team claims that the time required is

over 900 seconds.

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) UNINITIALIZED
VARIABLE - LOW

Description:

On the VentureCapital.sol contract, state variable axion is not

initialized, by default it holds 0x0 address, and variable is considered

on the other calculation progresses in function updateTokenPricePerShare.

If a variable is meant to be initialized to zero, explicitly set it to

zero to improve code readability.

Code Location:

Listing 66: VentureCapital.sol (Lines 39)

39 address public axion;

40 Contracts internal contracts;

41 }

Listing 67: VentureCapital.sol (Lines 242)

236 function updateTokenPricePerShare(address tokenAddress ,

uint256 amountBought)

237 external

238 payable

239 override

240 onlyExternalCaller

241 {

242 if (tokenAddress != axion) {

243 tokenPricePerShare[tokenAddress] =

244 tokenPricePerShare[tokenAddress] + // increase the

token price per share with the amount bought

divided by the total Vca registered shares

245 (amountBought * (1e36)) /

246 (contracts.stakeManager.

getTotalVcaRegisteredShares () + 1e12);

247 }

248 }

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 3

Recommendations:

If is recommended to initialize all internal variables on the same

function, either on the constructor or a custom init method. However,

using uninitialized variables and expecting them to have a value could

cause unexpected behaviours on the execution flow.

Remediation Plan:

SOLVED: The Axion Network team solved the issue by adding and initializing

axion in the manager controllable init() function, also declared axion

as internal.

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.12 (HAL-12) USAGE OF
STRICT-EQUALITIES - INFORMATIONAL

Description:

Use of strict equalities that can be easily manipulated by an attacker.

Code Location:

Listing 68: StakeManager.sol (Lines 472)

465 function addDailyInterest () public {

466 require(

467 block.timestamp >= interestFields.

nextAddInterestTimestamp ,

468 'Staking: Too early to add interest.'

469);

470 uint256 todaysSharePayout; // free

471 uint256 interest = getTodaysInterest ();

472 if (statFields.sharesTotalSupply == 0) {

473 statFields.sharesTotalSupply = 1e6;

474 } // Is this necessary? cost 1000 gas for the if statement

, 212832.. Only needed for testing?

Risk Level:

Likelihood - 1

Impact - 2

Recommendations:

Don’t use strict equality to determine if an account has enough Ether or

tokens.

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

NOT APPLICABLE: The Axion Network team claims that they are checking a

contract owned variable, not ether or tokens of a user.

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.13 (HAL-13) PRAGMA TOO RECENT -
INFORMATIONAL

Description:

Axion Network in-scope main branch contract uses one of the latest pragma

version (0.8.0) which was released on December 16, 2020. The latest pragma

version (0.8.7) was released in August 2021. Many pragma versions have

been lately released, going from version 0.7.x to the recently released

version 0.8.x. in just 6 months.

Reference: https://github.com/ethereum/solidity/releases

In the Solitidy Github repository, there is a json file where are all

bugs finding in the different compiler versions. It should be noted that

pragma 0.6.12 and 0.7.6 are widely used by Solidity developers and have

been extensively tested in many security audits.

Reference: https://github.com/ethereum/solidity/blob/develop/docs/bugs_-

by_version.json

Code Location:

Listing 69: (Lines 3)

1 // SPDX -License -Identifier: MIT

2

3 pragma solidity >=0.8.0;

Risk Level:

Likelihood - 1

Impact - 2

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendations:

If possible, consider using the latest stable pragma version that has

been thoroughly tested to prevent potential undiscovered vulnerabilities

such as pragma between 0.6.12 - 0.7.6.

Remediation Plan:

ACKNOWLEDGED: The Axion Network team accepts the risk and continues using

pragma version 0.8.0.

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.14 (HAL-14) MISSING EVENTS
EMITTING - INFORMATIONAL

Description:

It has been observed that important functionality is missing emitting

event for some functions on the Accelerator.sol contract. These functions

should emit events. Events are a method of informing the transaction

initiator about the actions taken by the called function. It logs its

emitted parameters in a specific log history, which can be accessed

outside of the contract using some filter parameters. These functions

should emit events.

Code Location:

Listing 70: Accelerator.sol (Lines 403)

402 function setMinStakeDays(uint256 _days) external onlyManager {

403 minStakeDays = _days;

404 }

Listing 71: Accelerator.sol (Lines 420)

419 function setMaxBoughtPerDay(uint256 _amount) external

onlyManager {

420 maxBoughtPerDay = _amount;

421 }

Listing 72: Accelerator.sol (Lines 427)

426 function setBaseBonus(uint8 _amount) external onlyManager {

427 baseBonus = _amount;

428 }

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 73: Accelerator.sol (Lines 434)

433 function setBonusStartPercent(uint8 _amount) external

onlyManager {

434 bonusStartPercent = _amount;

435 }

Listing 74: Accelerator.sol (Lines 441)

440 function setBonusStartDays(uint16 _amount) external

onlyManager {

441 bonusStartDays = _amount;

442 }

Listing 75: Accelerator.sol (Lines 455)

454 function setStart(uint256 _start) external onlyManager {

455 start = _start;

456 }

Listing 76: Accelerator.sol (Lines 533,534,535,536,537,538,539)

533 function startVariables(

534 uint256 _minStakeDays ,

535 uint256 _start ,

536 uint256 _secondsInDay ,

537 uint256 _maxBoughtPerDay ,

538 uint8 _bonusStartPercent ,

539 uint16 _bonusStartDays ,

540 uint8 _baseBonus ,

541 uint8 [3] calldata _splitAmounts

542) external onlyMigrator {

543 uint8 total = _splitAmounts [0] + _splitAmounts [1] +

_splitAmounts [2];

544 require(total == 100, 'ACCELERATOR: Split Amounts must ==

100');

545

546 minStakeDays = _minStakeDays;

547 start = _start;

548 secondsInDay = _secondsInDay;

549 maxBoughtPerDay = _maxBoughtPerDay;

550 bonusStartPercent = _bonusStartPercent;

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

551 bonusStartDays = _bonusStartDays;

552 baseBonus = _baseBonus;

553 splitAmounts = _splitAmounts;

554 }

555 }

Risk Level:

Likelihood - 1

Impact - 2

Recommendations:

For best security practices, consider as much as possible declaring events

at the end of the function. Events can be used to detect the end of the

operation.

Remediation Plan:

SOLVED: The Axion Network team solved the issue by adding events to the

above functions.

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.15 (HAL-15) REDUNDANT BOOLEAN
COMPARISON - INFORMATIONAL

Description:

In the solidity language, Boolean constants can be used directly and do

not need to be compare to true or false. In the Axion Network contracts,

boolean constants are compared with true or false.

Code Location:

Listing 77: Accelerator.sol (Lines 182,183,184,185)

182 require(

183 allowedTokens[_token] == true ,

184 'AUTOSTAKER: This token is not allowed to be used on

this contract '

185);

Listing 78: VentureCapital.sol (Lines 58,59)

57 function ensureIsVcaRegisteredInternal(address staker)

internal {

58 if (isVcaRegistered[staker] == false) {

59 if (contracts.stakingV2.getIsVCARegistered(staker) ==

false) {

60 uint256 totalShares = contracts.stakingV2.

resolveTotalSharesOf(staker);

Listing 79: VentureCapital.sol (Lines 293)

292 function getDeductBalances(address staker , address token)

external view returns (int256) {

293 if (isVcaRegistered[staker] == false) {

294 return contracts.stakingV2.getDeductBalances(staker ,

token).toInt256 ();

295 }

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 80: VentureCapital.sol (Lines 308)

303 function getTokenInterestEarned(address accountAddress ,

address tokenAddress)

304 external

305 view

306 returns (uint256)

307 {

308 if (isVcaRegistered[accountAddress] == false) {

309 return

310 ((contracts.stakingV2.getTotalSharesOf(

accountAddress) *

311 tokenPricePerShare[tokenAddress]) -

312 contracts.stakingV2.getDeductBalances(

accountAddress , tokenAddress)) / 1e36;

313 }

Listing 81: VentureCapital.sol (Lines 329,337)

328 function getTotalSharesOf(address account) external view

returns (uint256) {

329 if (isVcaRegistered[account] == false) {

330 return contracts.stakingV2.getTotalSharesOf(account);

331 }

332

333 return totalSharesOf[account];

334 }

335

336 function getIsVCARegistered(address staker) external view

returns (bool) {

337 if (isVcaRegistered[staker] == false) {

338 return contracts.stakingV2.getIsVCARegistered(staker);

339 }

340

341 return true;

342 }

Listing 82: StakeToken.sol (Lines 41)

40 function mint(address staker , uint256 id) external override

onlyExternalCaller {

41 require(enabled == true , 'STAKE TOKEN: Contract is

disabled ');

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

42 _safeMint(staker , id);

43 }

Listing 83: StakeToken.sol (Lines 79)

74 function transferFrom(

75 address from ,

76 address to ,

77 uint256 tokenId

78) public virtual override(ERC721Upgradeable ,

IERC721Upgradeable) onlyMigrator pausable {

79 require(transferEnabled == true , 'STAKE TOKEN: transfer is

disabled.');

Listing 84: StakeBurner.sol (Lines 132,133,134,135)

132 require(

133 contracts.stakeManager.getStakeWithdrawnOrExists(

sessionId) == false ,

134 'STAKE BURNER: stake is withdrawn or already v3.'

135);

Listing 85: StakeBurner.sol (Lines 158)

149 if (shares != 0) {

150 if (requireMature) {

151 require(

152 end != 0 && end <= block.timestamp ,

153 'STAKE BURNER: stake not mature or not set.'

154);

155 }

156 // if shares are not 0 it means it is v2 or has been

upgraded and saved to v2

157

158 require(withdrawn == false , 'STAKE BURNER: stake

withdrawn on v2.');

159 } else {

61

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 86: StakeMinter.sol (Lines 187)

185 if (shares != 0) {

186 // if shares are not 0 it means it is v2 or has been

upgraded and saved to v2

187 require(withdrawn == false , 'STAKE BURNER: stake

withdrawn on v2.');

188 } else {

Listing 87: StakeMinter.sol (Lines 168,169,170,171)

168 require(

169 contracts.stakeManager.getStakeWithdrawnOrExists(id)

== false ,

170 'STAKE MINTER: stake is withdrawn or already v3.'

171);

Listing 88: StakeUpgrader.sol (Lines 64,65,66,67)

62 function maxShareLegacyUpgrade(uint256 sessionId) external

pausable {

63 require(sessionId <= settings.lastSessionIdV2 , 'UNSTAKER:

invalid stakeId.');

64 require(

65 contracts.stakeManager.getStakeWithdrawnOrExists(

sessionId) == false ,

66 'UNSTAKER: stake is withdrawn or already v3.'

67);

Listing 89: StakeUpgrader.sol (Lines 84)

81 if (shares != 0) {

82 // if shares are not 0 it means it is v2 or has been

upgraded and saved to v2

83

84 require(withdrawn == false , 'UNSTAKER: stake withdrawn

on v2.');

85 } else {

62

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 90: StakeUpgrader.sol (Lines 120)

119 function maxShareUpgradeInternal(uint256 stakingDays) internal

view {

120 require(settings.maxShareEventActive == true , 'STAKING:

Max Share event is not active ');

121 require(

122 stakingDays <= settings.maxShareMaxDays ,

123 'STAKING: Max Share Upgrade - Stake must be less then

max share max days'

124);

125 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendations:

It is recommended to compare boolean constants directly in the require

modifier.

Remediation Plan:

SOLVED: The Axion Network team solved the issue by removing boolean

constants comparison with true or false, and implemented comparison of

boolean constants directly in the require modifier.

63

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.16 (HAL-16) POSSIBLE MISUSE OF
PUBLIC FUNCTIONS - INFORMATIONAL

Description:

In public functions, array arguments are immediately copied to memory,

while external functions can read directly from calldata. Reading

calldata is cheaper than memory allocation. Public functions need to

write the arguments to memory because public functions may be called

internally. Internal calls are passed internally by pointers to memory.

Thus, the function expects its arguments being located in memory when the

compiler generates the code for an internal function.

Also, methods do not necessarily have to be public if they are only called

within the contract-in such case they should be marked internal.

Code Location:

Below are smart contracts and their corresponding functions affected:

Accelerator.sol:

getSplitAmounts()

DataReader.sol:

initialize(address,address,address,address,address)

StakeBurner.sol:

init(address,address,address,address,address,address,address,address)

StakeManager.sol:

init(address,address,address,address,address,address)

StakeMinter.sol:

init(address,address,address,address,address,address,address,address,address)

restore(uint32,uint32)

StakeReminter.sol:

init(address,address,address,address)

64

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

StakeToken.sol:

init(address,address,address,address)

StakeUpgrader.sol:

init(address,address,address,address,address)

Token.sol:

init(address,address,address,address) initialize(address,address,string,string)

VentureCapital.sol:

initialize(address,address)

AuctionV21.sol:

calculateStepsFromStart()

StakingV21.sol:

calculateStakingInterest(uint256,uint256,uint256) calculateStepsFromStart()

getAmountOutAndPenalty(uint256,uint256,uint256,uint256)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider as much as possible declaring external variables instead of

public variables. As for best practice, you should use external if you

expect that the function will only be called externally and use public

if you need to call the function internally. To sum up, all can access

to public functions, external functions only can be accessed externally

and internal functions can only be called within the contract.

Remediation Plan:

SOLVED: The Axion Network team solved the issue by declaring external

functions instead of public.

65

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

66

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a Solidity

static analysis framework. After Halborn verified all the contracts in the

repository and was able to compile them correctly into their abi and binary

formats. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

67

AU
TO

MA
TE

D
TE

ST
IN

G

68

AU
TO

MA
TE

D
TE

ST
IN

G

69

AU
TO

MA
TE

D
TE

ST
IN

G

70

AU
TO

MA
TE

D
TE

ST
IN

G

According to the test results, some of the findings found by these tools

were considered as false positives while some of these findings were real

security concerns. All relevant findings were reviewed by the auditors

and relevant findings addressed on the report as security concerns.

71

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruit on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the testers machine and sent the compiled results to the analyzers

to locate any vulnerabilities. Only security-related findings are shown

below.

Results:

ExternallyCallable.sol, Manageable.sol, Migrateable.sol, Pausable.sol

72

AU
TO

MA
TE

D
TE

ST
IN

G

BPD.sol, StakeBase.sol, StakeToken.sol

StakeBurner.sol, StakeCustodian.sol, StakeMinter.sol

StakeReminter.sol, StakeUpgrader.sol, StakeManager.sol

73

AU
TO

MA
TE

D
TE

ST
IN

G

AuctionV21.sol, StakingV21.sol

Accelerator.sol

74

AU
TO

MA
TE

D
TE

ST
IN

G

VentureCapital.sol

AxionSafeCast.sol

All relevant valid findings were founded in the manual code review.

75

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendations
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendations
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendations
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendations
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendations
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description
	Results

