
For :
Axion

By :
Alex Papageorgiou @ CertiK
alex.papageorgiou@certik.org

Georgios Delkos @ CertiK
georgios.delkos@certik.io

Axion

Security Assessment

October 23rd, 2020

mailto:alex.papageorgiou@certik.org
mailto:georgios.delkos@certik.io

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

af://n9591
af://n9598

Project Name Axion

Description An ERC20 token implementation with an inflation mechanism
via staking and a penalty-based auction system.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. f2e654900f5023df3289426e0870d65efed06ea1
2. cfcc6d13abda5c748ee04c68cf784515b7508d16
3. 0c5b3c6dbfa2f3a24c5208cfa2e920fed3357788

Delivery Date October 23rd, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline October 19th, 2020 - October 23rd, 2020

Total Issues 70

Total Critical 0

Total Major 1

Total Medium 3

Total Minor 7

Total Informational 59

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/Rock-n-Block/axion-contracts
https://github.com/Rock-n-Block/axion-contracts/commit/f2e654900f5023df3289426e0870d65efed06ea1
https://github.com/Rock-n-Block/axion-contracts/commit/cfcc6d13abda5c748ee04c68cf784515b7508d16
https://github.com/Rock-n-Block/axion-contracts/commit/0c5b3c6dbfa2f3a24c5208cfa2e920fed3357788
af://n9607
af://n9609
af://n9627
af://n9642

ID Contract Location

AUC Auction.sol contracts/Auction.sol

BPD BPD.sol contracts/BPD.sol

FSP ForeignSwap.sol contracts/ForeignSwap.sol

IBP IBPD.sol contracts/interfaces/IBPD.sol

ITN IToken.sol contracts/interfaces/IToken.sol

IAN IAuction.sol contracts/interfaces/IAuction.sol

ISG IStaking.sol contracts/interfaces/IStaking.sol

IFS IForeignSwap.sol contracts/interfaces/IForeignSwap.sol

ISB ISubBalances.sol contracts/interfaces/ISubBalances.sol

NSP NativeSwap.sol contracts/NativeSwap.sol

STA Staking.sol contracts/Staking.sol

SBS SubBalances.sol contracts/SubBalances.sol

TOK Token.sol contracts/Token.sol

 Executive Summary

During the process of our audit, we pinpointed several findings in all categories, many of which
were mostly optimizational. The Axion team remediated all Major, Medium and Minor severity
findings, however a lot of Informational findings that can greatly optimize the codebase and
reduce the gas cost incurred by interacting with the contracts have been pointed out and should
be taken into account for a next iteration of the codebase where applicable.

 Files In Scope

 Findings

https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/Auction.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/BPD.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/ForeignSwap.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/interfaces/IBPD.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/interfaces/IToken.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/interfaces/IAuction.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/interfaces/IStaking.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/interfaces/IForeignSwap.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/interfaces/ISubBalances.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/NativeSwap.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/Staking.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/SubBalances.sol
https://github.com/Rock-n-Block/axion-contracts/blob/undefined/contracts/Token.sol
af://n9664
af://n9668
af://n9727

ID Title Type Severity Resolved

STA-01 Unlocked Compiler
Version

Language Specific Informational

STA-02 Declaration Naming
Convention

Coding Style Informational

STA-03 Contract-Level Tight-
Packing

Gas Optimization Informational

STA-04 Redundant Variable
Initialization

Coding Style Informational

STA-05 Variable Mutability
Optimization

Gas Optimization Informational

STA-06 Inexistent Access
Control

Control Flow Minor

STA-07 Assignment Location Gas Optimization Informational

STA-08 Unconventional
Function Name

Coding Style Informational

STA-09 Unoptimized if-else

Conditionals
Gas Optimization Informational

STA-10 Unreachable return
Statement

Gas Optimization Informational

STA-11 Code Duplication Gas Optimization Informational

STA-12 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

SBS-01 Visibility Specifiers
Missing

Language Specific Informational

SBS-02 Struct Tight-Packing Gas Optimization Informational

SBS-03 Variable Mutability
Optimization

Gas Optimization Informational

SBS-04 Redundant SafeMath
Utilization

Gas Optimization Informational

SBS-05 Utilization of Return
Variable

Coding Style Informational

SBS-06 Variable Data
Location Optimization

Gas Optimization Informational

ID Title Type Severity Resolved

SBS-07 Redundant Array
Loop Assignment

Gas Optimization Informational

SBS-08 Unoptimized if-else

Conditionals
Gas Optimization Informational

SBS-09 Conditional
Optimization

Gas Optimization Informational

SBS-10 Redundant SafeMath
Utilization

Gas Optimization Informational

SBS-11 Unreachable return
Statement

Gas Optimization Informational

SBS-12 Incorrect Error
Message

Inconsistency Informational

SBS-13 String Literal
Representation

Compiler Error Informational

SBS-14 Dangerous
Conditional Execution

Volatile Code Medium

SBS-15 Redundant Statement Gas Optimization Informational

SBS-16 Redundant SafeMath
Utilization

Gas Optimization Informational

SBS-17 Unconventional Loop
Logic

Gas Optimization Informational

SBS-18 Multiple External
Getter Calls

Gas Optimization Informational

SBS-19 Unlocked Compiler
Version

Language Specific Informational

SBS-20 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

TOK-01 Mutability Specifiers
Missing

Gas Optimization Informational

TOK-02 Unsanitized Input Logical Issue Informational

TOK-03 Requisite Value of
ERC-20
transferFrom() Call

Logical Issue Minor

TOK-04 Misleading init
Function Prefix

Coding Style Informational

ID Title Type Severity Resolved

TOK-05 Incorrect require
Check

Logical Issue Minor

TOK-06 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

TOK-07 Unlocked Compiler
Version

Language Specific Informational

TOK-08 Declaration Naming
Convention

Coding Style Informational

NSP-01 Unlocked Compiler
Version

Language Specific Informational

NSP-02 Redundant Variable
Initialization

Coding Style Informational

NSP-03 require Order Gas Optimization Informational

NSP-04 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

NSP-05 Requisite Value of
ERC-20
transferFrom() Call

Logical Issue Minor

NSP-06 Variable Mutability
Optimization

Gas Optimization Informational

NSP-07 Inexistent Access
Control

Control Flow Minor

FSP-01 Unlocked Compiler
Version

Language Specific Informational

FSP-02 Calculation
Optimization

Gas Optimization Informational

FSP-03 Variable Mutability
Optimization

Gas Optimization Informational

FSP-04 Amount Inaccuracy Logical Issue Medium

FSP-05 Duplicate External
Calls

Gas Optimization Informational

FSP-06 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

ID Title Type Severity Resolved

BPD-01 Unlocked Compiler
Version

Language Specific Informational

BPD-02 Calculation
Remainder

Mathematical
Operations

Minor

BPD-03 Unconventional Logic Gas Optimization Informational

BPD-04 Variable Mutability
Optimization

Gas Optimization Informational

BPD-05 Utilization of Return
Variable

Coding Style Informational

AUC-01 Unlocked Compiler
Version

Language Specific Informational

AUC-02 Redundant Variable
Initialization

Coding Style Informational

AUC-03 Redundant
Conditional

Logical Issue Medium

AUC-04 Double Payout Logical Issue Major

AUC-05 Conditional
Optimization

Gas Optimization Informational

AUC-06 Declaration Naming
Convention

Coding Style Informational

AUC-07 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

AUC-08 Storage of
_msgSender() to
Memory

Gas Optimization Informational

AUC-09 Variable Mutability
Optimization

Gas Optimization Informational

AUC-10 Inexistent Access
Control

Control Flow Minor

AUC-11 Redundant Type-
Casting

Coding Style Informational

AUC-12 Dead Code Coding Style Informational

Type Severity Location

Language Specific Informational Staking.sol L3

 STA-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L3
af://n10156
af://n10168
af://n10171
af://n10175

Type Severity Location

Coding Style Informational Staking.sol L51

 STA-02: Declaration Naming Convention

Description:

The linked declarations do not conform to the Solidity style guide with regards to its naming
convention. Particularly:

camelCase : Should be applied to function names, argument names, local and state variable
names, modifiers
UPPER_CASE : Should be applied to constant variables
CapWords : Should be applied to contract names, struct names, event names and enums

Recommendation:

We advise that the linked variable and function names are adjusted to properly conform to
Solidity's naming convention.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L51
af://n10178
af://n10190
https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions
af://n10200
af://n10203

Type Severity Location

Gas Optimization Informational Staking.sol L41, L51

 STA-03: Contract-Level Tight-Packing

Description:

The linked variables in sum occupy less than 256-bits whilst they exist in non-sequential order.

Recommendation:

We advise that either variable is moved right next to the other to optimize the gas cost of the
contract as they would occupy a single storage slot instead of two separate ones.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L41
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L51
af://n10206
af://n10218
af://n10221
af://n10224

Type Severity Location

Coding Style Informational Staking.sol L66

 STA-04: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their
zeroed out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is
ERC20) are initialized to their zeroed out address (i.e. for a given contract ERC20 {} its
default value is ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this
table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase
legibility.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L66
af://n10227
af://n10239
af://n10255
af://n10258

Type Severity Location

Gas Optimization Informational Staking.sol L79-L86

 STA-05: Variable Mutability Optimization

Description:

The linked variable assignments are meant to be conducted once during the contract's
initalization.

Recommendation:

If all or some of those assignments are instead moved to the constructor of the contract, they
can be greatly optimized by setting them as immutable thus reducing the gas cost involved in
interacting with them significantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L79-L86
af://n10261
af://n10273
af://n10276
af://n10279

Type Severity Location

Control Flow Minor Staking.sol L69-L87

 STA-06: Inexistent Access Control

Description:

The linked function that initializes the contract does not follow the access control convention of
the other contracts whereby they declare a setter role that is revoked at the end of the init
function's execution.

Recommendation:

We advise that the same access control paradigm is followed across all contracts.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L69-L87
af://n10282
af://n10294
af://n10297
af://n10300

Type Severity Location

Gas Optimization Informational Staking.sol L362, L365

 STA-07: Assignment Location

Description:

The linked assignment is executed in both cases of the if clause.

Recommendation:

We advise that it is instead moved outside the if else block.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L362
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L365
af://n10303
af://n10315
af://n10318
af://n10321

Type Severity Location

Coding Style Informational Staking.sol L414

 STA-08: Unconventional Function Name

Description:

The utility function getNow0x retrieves the current block.timestamp externally.

Recommendation:

This function, apart from being redundant as off-chain processes can easily retrieve the current
block.timestamp , also utilizes an unconventional 0x suffix. We advise that it is omitted.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L414
af://n10324
af://n10336
af://n10339
af://n10342

Type Severity Location

Gas Optimization Informational Staking.sol L302, L307-L308,
L320

 STA-09: Unoptimized if-else Conditionals

Description:

Each conditional beyond the first contains a redundant comparator of its respective preceding
conditional.

Recommendation:

As each preceding case would guarantee the first comparison of each else if clause, it is
possible to omit the first conditional of each linked condition and completely remove the last
conditional rendering it a simple else statement.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L302
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L307-L308
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L320
af://n10345
af://n10357
af://n10360
af://n10363

Type Severity Location

Gas Optimization Informational Staking.sol L324

 STA-10: Unreachable return Statement

Description:

This statement will never be reached as the preceding if chain covers all cases of the function.

Recommendation:

We advise that it is omitted from the codebase.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L324
af://n10366
af://n10378
af://n10381
af://n10384

Type Severity Location

Gas Optimization Informational Staking.sol L97-L164

 STA-11: Code Duplication

Description:

The linked functions contain the exact same statements apart from the value of one variable.

Recommendation:

We advise that they instead utilize a common internal or private function that accepts the
specified variable as an input parameter, greatly optimizing the bytecode and gas cost of the
contract.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L97-L164
af://n10387
af://n10399
af://n10402
af://n10405

Type Severity Location

Gas Optimization Informational Staking.sol L100, L137, L216

 STA-12: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L100
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L137
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Staking.sol#L216
af://n10408
af://n10420
af://n10423
af://n10426

Type Severity Location

Language Specific Informational SubBalances.sol L62, L63

 SBS-01: Visibility Specifiers Missing

Description:

The linked variable declarations do not have a visibility specifier explicitly set.

Recommendation:

Inconsistencies in the default visibility the Solidity compilers impose can cause issues in the
functionality of the codebase. We advise that visibility specifiers for the linked variables are
explicitly set.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L62
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L63
af://n10429
af://n10441
af://n10444
af://n10447

Type Severity Location

Gas Optimization Informational SubBalances.sol L26-L35

 SBS-02: Struct Tight-Packing

Description:

The StakeSession struct contains an unoptimized struct layout.

Recommendation:

Its layout can be optimized by re-ordering the address staker variable to instead exist after or
before the bool withdrawn variable so that those two variables are tight-packed into the same
storage slot.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L26-L35
af://n10450
af://n10462
af://n10465
af://n10468

Type Severity Location

Gas Optimization Informational SubBalances.sol L86-L92

 SBS-03: Variable Mutability Optimization

Description:

The linked variable assignments are meant to be conducted once during the contract's
initialization by the SETTER_ROLE address.

Recommendation:

If all or some of those assignments are instead moved to the constructor of the contract, they
can be greatly optimized by setting them as immutable thus reducing the gas cost involved in
interacting with them significantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L86-L92
af://n10471
af://n10483
af://n10486
af://n10489

Type Severity Location

Gas Optimization Informational SubBalances.sol L95

 SBS-04: Redundant SafeMath Utilization

Description:

The linked statement conducts a SafeMath addition between the iterator variable i and the
number literal 1 .

Recommendation:

This calculation will never overflow and as such, the utilization of SafeMath increases the gas cost
of the function redundantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L95
af://n10492
af://n10504
af://n10507
af://n10510

Type Severity Location

Coding Style Informational SubBalances.sol L128

 SBS-05: Utilization of Return Variable

Description:

The linked statement explicitly returns the return variable shareAmount .

Recommendation:

Instead of explicitly returning the variable, a break statement could be introduced here instead.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L128
af://n10513
af://n10525
af://n10528
af://n10531

Type Severity Location

Gas Optimization Informational SubBalances.sol L140

 SBS-06: Variable Data Location Optimization

Description:

The linked variable is declared as storage yet all struct members are accessed.

Recommendation:

It is more optimal to instead store it as a memory variable as the lookup operations per struct
member will be optimized.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L140
af://n10534
af://n10546
af://n10549
af://n10552

Type Severity Location

Gas Optimization Informational SubBalances.sol L153-L156

 SBS-07: Redundant Array Loop Assignment

Description:

The linked code segment retrieves the stakeSession from storage and assigns each of the 5
payDayEligible members to the stakePayDays array.

Recommendation:

It is possible to instead directly assign stakeSessions[sessionId].payDayEligible to
stakePayDays as the arrays in question are statically-sized ones.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L153-L156
af://n10555
af://n10567
af://n10570
af://n10573

Type Severity Location

Gas Optimization Informational SubBalances.sol L199, L204,
L211

 SBS-08: Unoptimized if-else Conditionals

Description:

Each conditional beyond the first contains a redundant comparator of its respective preceding
conditional.

Recommendation:

As each preceding case would guarantee the first comparison of each else if clause, it is
possible to omit the first conditional of each linked condition and completely remove the last
conditional rendering it a simple else statement.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L199
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L204
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L211
af://n10576
af://n10588
af://n10591
af://n10594

Type Severity Location

Gas Optimization Informational SubBalances.sol L199

 SBS-09: Conditional Optimization

Description:

The equality case of the latter part of the comparison would yield the value equivalent of the
clause's body.

Recommendation:

The linked else if clause can be optimized by making the latter part of the comparison a less-
than-or-equal-to.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L199
af://n10597
af://n10609
af://n10612
af://n10615

Type Severity Location

Gas Optimization Informational SubBalances.sol L207

 SBS-10: Redundant SafeMath Utilization

Description:

The linked statement conducts a SafeMath subtraction between the literal 714 and the value of
daysAfterStaking i.e. daysStaked.sub(stakingDays)

Recommendation:

Both the subtraction of L206 as well as the subtraction of the linked line can be optimized by
removing the redundant sub invocation as they are guaranteed to never underflow due to the
else if conditional that precedes them.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L207
af://n10618
af://n10630
af://n10633
af://n10636

Type Severity Location

Gas Optimization Informational SubBalances.sol L215

 SBS-11: Unreachable return Statement

Description:

This statement will never be reached as the preceding if chain covers all cases of the function.

Recommendation:

We advise that it is omitted from the codebase.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L215
af://n10639
af://n10651
af://n10654
af://n10657

Type Severity Location

Inconsistency Informational SubBalances.sol L223

 SBS-12: Incorrect Error Message

Description:

The linked error message says that the caller is not matching the sessionId, yet the staker
member is evaluated in the conditional.

Recommendation:

We advise that the error message properly reflects the condition being evaluated.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L223
af://n10660
af://n10672
af://n10675
af://n10678

Type Severity Location

Compiler Error Informational SubBalances.sol L247, L298

 SBS-13: String Literal Representation

Description:

The linked string literal for the error message utilizes single quotes ('') instead of double quotes
("").

Recommendation:

We advise that double quotes are utilized instead as single quotes are used for byte
representations.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L247
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L298
af://n10681
af://n10693
af://n10696
af://n10699

Type Severity Location

Volatile Code Medium SubBalances.sol L268-L277

 SBS-14: Dangerous Conditional Execution

Description:

The linked code block saves a specified StakeSession yet it is only executed when the duration
of the staking is greater-than-or-equal-to the basePeriod , otherwise only shares are added to the
currentSharesTotalSupply

Recommendation:

We advise that the if conditional is instead changed to a require check as we do not believe it
is intended to add new shares to the total supply pool when a stake session is not created.

Alleviation:

After discussing with the Axion team, we came to the conclusion that a require check imposed
here would halt the execution of external contracts interacting with the SubBalances contract
and as such, it is more optimal to use an if conditional. The non-creation of a stake session
during callIncomeStakerTrigger does not impact the soundness of the contract.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L268-L277
af://n10702
af://n10714
af://n10717
af://n10720

Type Severity Location

Gas Optimization Informational SubBalances.sol L296

 SBS-15: Redundant Statement

Description:

The linked statement does not affect the functionality of the code block.

Recommendation:

We advise that it is omitted.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L296
af://n10723
af://n10735
af://n10738
af://n10741

Type Severity Location

Gas Optimization Informational SubBalances.sol L248, L299

 SBS-16: Redundant SafeMath Utilization

Description:

The linked subtractions will never underflow yet utilize the SafeMath implementation.

Recommendation:

We advise that the sub invocations are replaced by literal subtractions (-) as the linked
statements will never underflow due to the require statements that precede them

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L248
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L299
af://n10744
af://n10756
af://n10759
af://n10762

Type Severity Location

Gas Optimization Informational SubBalances.sol L339-L355

 SBS-17: Unconventional Loop Logic

Description:

The generatePool function is meant to iterate through the subBalanceList and attempt to
create a pool out of the first SubBalance that is eligible

Recommendation:

We advise that the return statement from L352 is removed and an explicitly named bool return
variable is utilized instead to allow multiple pools to be generated on a single run. Additionally, we
advise the function's name to be changed to generatePools . The first change will lead to a lower
total gas consumption if multiple big pay days are created in a single execution.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L339-L355
af://n10765
af://n10777
af://n10780
af://n10783

Type Severity Location

Gas Optimization Informational SubBalances.sol L370-L374

 SBS-18: Multiple External Getter Calls

Description:

The linked statements conduct 4 external getter calls on the foreignSwap address.

Recommendation:

As the ForeignSwap implementation can be controlled, we advise that a single getter function is
set on its implementation that returns all the necessary variables to greatly optimize the gas cost
of the linked code block.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L370-L374
af://n10786
af://n10798
af://n10801
af://n10804

Type Severity Location

Language Specific Informational SubBalances.sol L3

 SBS-19: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L3
af://n10807
af://n10819
af://n10822
af://n10826

Type Severity Location

Gas Optimization Informational SubBalances.sol L144, L228,
L232

 SBS-20: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L144
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L228
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/SubBalances.sol#L232
af://n10829
af://n10841
af://n10844
af://n10847

Type Severity Location

Gas Optimization Informational Token.sol L17, L45

 TOK-01: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or
during the constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to
greatly optimize the gas cost involved in utilizing the variable. For the latter, we advise that the
immutable mutability specifier is set at the variable's contract-level declaration to greatly
optimize the gas cost of utilizing the variables. Please note that the immutable keyword only
works in Solidity versions v0.6.5 and up.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L17
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L45
af://n10850
af://n10862
af://n10865
af://n10868

Type Severity Location

Logical Issue Informational Token.sol L52-L54

 TOK-02: Unsanitized Input

Description:

The linked for block sets the MINTER_ROLE for each address contained in the instances array.
However, no input sanitization takes place.

Recommendation:

The instances[index] address should be checked to not be equal to the zero address
(address(0)) and optionally that it is not a duplicate value in the array as the init function can
only be called once.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L52-L54
af://n10871
af://n10883
af://n10886
af://n10889

Type Severity Location

Logical Issue Minor Token.sol L80-L83

 TOK-03: Requisite Value of ERC-20 transferFrom() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether
(USDT) leading to unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the
transferFrom() function is safely invoked in all circumstances.

Alleviation:

After discussing with the Axion team, we concluded that the safe alternative of transferFrom()
is not necessary here as the token implementation is meant to fully conform to the ERC20
standard so incompatibility with tokens such as USDT is of no concern.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L80-L83
af://n10892
af://n10904
af://n10907
af://n10910

Type Severity Location

Coding Style Informational Token.sol L79, L87, L93

 TOK-04: Misleading init Function Prefix

Description:

The linked functions are meant to be called multiple times as their access control permits them to
yet they are prefixed with the word init which would lead one to think those functions would
only be called once.

Recommendation:

We advise that the init prefix is omitted from those functions as they are misleading with
regards to their functionality.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L79
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L87
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L93
af://n10913
af://n10925
af://n10928
af://n10931

Type Severity Location

Logical Issue Minor Token.sol L88

 TOK-05: Incorrect require Check

Description:

The linked require statement contains an incorrect error message and condition as it ensures
that the amount to be withdrawn is greater-than-or-equal to the swapTokenBalance of the
contract, which is incorrect as any value higher than that would cause the function to throw.

Recommendation:

We advise that the conditional is instead changed to a less-than-or-equal (<=) to comparator and
that the error message's < symbol is swapped with > .

Alleviation:

The require check conditional was fixed to properly represent the error message it is
accompanied by and function correctly.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L88
af://n10934
af://n10946
af://n10949
af://n10952

Type Severity Location

Gas Optimization Informational Token.sol L97

 TOK-06: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L97
af://n10955
af://n10967
af://n10970
af://n10973

Type Severity Location

Language Specific Informational Token.sol L3

 TOK-07: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L3
af://n10976
af://n10988
af://n10991
af://n10995

Type Severity Location

Coding Style Informational Token.sol L71

 TOK-08: Declaration Naming Convention

Description:

The linked declarations do not conform to the Solidity style guide with regards to its naming
convention. Particularly:

camelCase : Should be applied to function names, argument names, local and state variable
names, modifiers
UPPER_CASE : Should be applied to constant variables
CapWords : Should be applied to contract names, struct names, event names and enums

Recommendation:

We advise that the linked variable and function names are adjusted to properly conform to
Solidity's naming convention.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Token.sol#L71
af://n10998
af://n11010
https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions
af://n11020
af://n11023

Type Severity Location

Language Specific Informational NativeSwap.sol L3

 NSP-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L3
af://n11026
af://n11038
af://n11041
af://n11045

Type Severity Location

Coding Style Informational NativeSwap.sol L25

 NSP-02: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their
zeroed out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is
ERC20) are initialized to their zeroed out address (i.e. for a given contract ERC20 {} its
default value is ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this
table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase
legibility.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L25
af://n11048
af://n11060
af://n11076
af://n11079

Type Severity Location

Gas Optimization Informational NativeSwap.sol L69

 NSP-03: require Order

Description:

The linked require statement relies on a variable that is available earlier in the code.

Recommendation:

We advise that the require check is imposed as early as possible to avoid any redundant gas
costs, i.e. right after the amount assignment.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L69
af://n11082
af://n11094
af://n11097
af://n11100

Type Severity Location

Gas Optimization Informational NativeSwap.sol L69

 NSP-04: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L69
af://n11103
af://n11115
af://n11118
af://n11121

Type Severity Location

Logical Issue Minor NativeSwap.sol L46-L49

 NSP-05: Requisite Value of ERC-20 transferFrom() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether
(USDT) leading to unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the
transferFrom() function is safely invoked in all circumstances.

Alleviation:

After discussing with the Axion team, we concluded that the safe alternative of transferFrom()
is not necessary here as the token implementation is meant to fully conform to the ERC20
standard so incompatibility with tokens such as USDT is of no concern.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L46-L49
af://n11124
af://n11136
af://n11139
af://n11142

Type Severity Location

Gas Optimization Informational NativeSwap.sol L36-L41

 NSP-06: Variable Mutability Optimization

Description:

The linked variable assignments are meant to be conducted once during the contract's
initalization.

Recommendation:

If all or some of those assignments are instead moved to the constructor of the contract, they
can be greatly optimized by setting them as immutable thus reducing the gas cost involved in
interacting with them significantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L36-L41
af://n11145
af://n11157
af://n11160
af://n11163

Type Severity Location

Control Flow Minor NativeSwap.sol L28-L43

 NSP-07: Inexistent Access Control

Description:

The linked function that initializes the contract does not follow the access control convention of
the other contracts whereby they declare a setter role that is revoked at the end of the init
function's execution.

Recommendation:

We advise that the same access control paradigm is followed across all contracts.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/NativeSwap.sol#L28-L43
af://n11166
af://n11178
af://n11181
af://n11184

Type Severity Location

Language Specific Informational ForeignSwap.sol L3

 FSP-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L3
af://n11187
af://n11199
af://n11202
af://n11206

Type Severity Location

Gas Optimization Informational ForeignSwap.sol L164-L165

 FSP-02: Calculation Optimization

Description:

The calculation of L165 is equal to delta minus a single deltaPart .

Recommendation:

We advise that it is replaced by delta.sub(deltaPart) optimizing its gas cost.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L164-L165
af://n11209
af://n11221
af://n11224
af://n11227

Type Severity Location

Gas Optimization Informational ForeignSwap.sol L67-L77

 FSP-03: Variable Mutability Optimization

Description:

The linked variable assignments are meant to be conducted once during the contract's
initalization.

Recommendation:

If all or some of those assignments are instead moved to the constructor of the contract, they
can be greatly optimized by setting them as immutable thus reducing the gas cost involved in
interacting with them significantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L67-L77
af://n11230
af://n11242
af://n11245
af://n11248

Type Severity Location

Logical Issue Medium ForeignSwap.sol L167-L168

 FSP-04: Amount Inaccuracy

Description:

The amount that is relayed to the callIncomeDailyTokensTrigger callback is higher than the
actual minted amount.

Recommendation:

We advise that the same value is relayed to the callback as the callback internally updates the
reserves of the token which will be inaccurate when this statement executes.

Alleviation:

The Axion team properly set the amount that the auction should be informed of, nullifying this
exhibit.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L167-L168
af://n11251
af://n11263
af://n11266
af://n11269

Type Severity Location

Gas Optimization Informational ForeignSwap.sol L167-L173

 FSP-05: Duplicate External Calls

Description:

The linked code segment contains two functions being invoked in sequence with different values.

Recommendation:

These values can instead be added to result in a single execution of those two function calls
optimizing the gas cost of the function.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L167-L173
af://n11272
af://n11284
af://n11287
af://n11290

Type Severity Location

Gas Optimization Informational ForeignSwap.sol L134, L151,
L170

 FSP-06: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L134
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L151
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/ForeignSwap.sol#L170
af://n11293
af://n11305
af://n11308
af://n11311

Type Severity Location

Language Specific Informational BPD.sol L3

 BPD-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/BPD.sol#L3
af://n11314
af://n11326
af://n11329
af://n11333

Type Severity Location

Mathematical Operations Minor BPD.sol L71-L76

 BPD-02: Calculation Remainder

Description:

The linked divisions and multiplications will result in a remainder that will forever be locked in the
contract as it will remain unaccounted for since Solidity is prone to rounding errors.

Recommendation:

We advise that the last pool is instead assigned the result of the subtraction of the sum of the
preceding pools from the full amount.

Alleviation:

The remainder issue was solved by retaining an additional variable called remainderPart that
retains the remainder to be distributed to the final pool. We envision another optimization that
can be made whereby instead of looping through all elements and conducting an if conditional,
the loop iterates through all elements minus 1 and manually sets the final pool's amount equal
to remainderPart . This would optimize the gas cost of the function.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/BPD.sol#L71-L76
af://n11336
af://n11348
af://n11351
af://n11354

Type Severity Location

Gas Optimization Informational BPD.sol L79-L92

 BPD-03: Unconventional Logic

Description:

The linked code segment iterates through the poolYearAmounts array instead of directly
retrieving the amount located at poolNumber .

Recommendation:

We advise that the poolAmount is used as an index directly and a require check, if necessary, or
an if block precedes it to ensure the index is within bounds.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/BPD.sol#L79-L92
af://n11357
af://n11369
af://n11372
af://n11375

Type Severity Location

Gas Optimization Informational BPD.sol L44

 BPD-04: Variable Mutability Optimization

Description:

The linked variable assignments are meant to be conducted once during the contract's
initalization.

Recommendation:

If all or some of those assignments are instead moved to the constructor of the contract, they
can be greatly optimized by setting them as immutable thus reducing the gas cost involved in
interacting with them significantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/BPD.sol#L44
af://n11378
af://n11390
af://n11393
af://n11396

Type Severity Location

Coding Style Informational BPD.sol L58

 BPD-05: Utilization of Return Variable

Description:

The linked statement explicitly returns the return variable poolAmount .

Recommendation:

Instead of explicitly returning the variable, a break statement could be introduced here instead.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/BPD.sol#L58
af://n11399
af://n11411
af://n11414
af://n11417

Type Severity Location

Language Specific Informational Auction.sol L3

 AUC-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.12 which is specified in the project's
truffle-config.js file, the contract should contain the following line:

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

pragma solidity 0.6.12;

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L3
af://n11420
af://n11432
af://n11435
af://n11439

Type Severity Location

Coding Style Informational Auction.sol L81

 AUC-02: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their
zeroed out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is
ERC20) are initialized to their zeroed out address (i.e. for a given contract ERC20 {} its
default value is ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this
table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase
legibility.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L81
af://n11442
af://n11454
af://n11470
af://n11473

Type Severity Location

Logical Issue Medium Auction.sol L144

 AUC-03: Redundant Conditional

Description:

The first part of the conditional always yields true as the index variable is a uint256 which is
restricted to the non-negative range (>= 0). As such, the loop is equivalent to while(true) and
the latter part of the conditional is not taken into account.

Recommendation:

The || joint of the conditional was meant to represent && and as such, we advise that the
conditional is adjusted to simply points != 7 .

Alleviation:

The team applied this exhibit in full, omitting the former part of the conditional.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L144
af://n11476
af://n11488
af://n11491
af://n11494

Type Severity Location

Logical Issue Major Auction.sol L241

 AUC-04: Double Payout

Description:

The linked line sends double the payout to the externalStake function, in contrast to the
intended bare payout as the referral system would be non-lucrative if this statement is intended.

Recommendation:

We advise that the addition of another payout is omitted from this line.

Alleviation:

The payout calculation was fixed by removing the invalid addition.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L241
af://n11497
af://n11509
af://n11512
af://n11515

Type Severity Location

Gas Optimization Informational Auction.sol L227, L315-L319

 AUC-05: Conditional Optimization

Description:

The _calculatePayoutWithUniswap function will either return a value that is less-than (<)
payout or equal to it whilst the conditional of L227 checks a greater-than (>) condition.

Recommendation:

The condition can instead be changed to an inequality (!=) comparison which is more efficient
gas-wise.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L227
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L315-L319
af://n11518
af://n11530
af://n11533
af://n11536

Type Severity Location

Coding Style Informational Auction.sol L111

 AUC-06: Declaration Naming Convention

Description:

The linked declarations do not conform to the Solidity style guide with regards to its naming
convention. Particularly:

camelCase : Should be applied to function names, argument names, local and state variable
names, modifiers
UPPER_CASE : Should be applied to constant variables
CapWords : Should be applied to contract names, struct names, event names and enums

Recommendation:

We advise that the linked variable and function names are adjusted to properly conform to
Solidity's naming convention.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L111
af://n11539
af://n11551
https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions
af://n11561
af://n11564

Type Severity Location

Gas Optimization Informational Auction.sol L217

 AUC-07: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L217
af://n11567
af://n11579
af://n11582
af://n11585

Type Severity Location

Gas Optimization Informational Auction.sol L172, L183, L185,
L186, L190, L191, L192, L212,
L215, L237, L243, L257, L264

 AUC-08: Storage of _msgSender() to Memory

Description:

The invocation of _msgSender() occurs repeatedly in the codebase.

Recommendation:

We advise that the result of its invocation is instead stored to an in-memory variable that is
subsequently utilized in each statement.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L172
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L183
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L185
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L186
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L190
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L191
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L192
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L212
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L215
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L237
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L243
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L257
https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L264
af://n11588
af://n11600
af://n11603
af://n11606

Type Severity Location

Gas Optimization Informational Auction.sol L101-L107

 AUC-09: Variable Mutability Optimization

Description:

The linked variable assignments are meant to be conducted once during the contract's
initalization.

Recommendation:

If all or some of those assignments are instead moved to the constructor of the contract, they
can be greatly optimized by setting them as immutable thus reducing the gas cost involved in
interacting with them significantly.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L101-L107
af://n11609
af://n11621
af://n11624
af://n11627

Type Severity Location

Control Flow Minor Auction.sol L84-L109

 AUC-10: Inexistent Access Control

Description:

The linked function that initializes the contract does not follow the access control convention of
the other contracts whereby they declare a setter role that is revoked at the end of the init
function's execution.

Recommendation:

We advise that the same access control paradigm is followed across all contracts.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L84-L109
af://n11630
af://n11642
af://n11645
af://n11648

Type Severity Location

Coding Style Informational Auction.sol L237

 AUC-11: Redundant Type-Casting

Description:

The linked ref variable is an address variable which is redundantly casted to an address
variable.

Recommendation:

We advise that the type casting is removed.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L237
af://n11651
af://n11663
af://n11666
af://n11669

Type Severity Location

Coding Style Informational Auction.sol L52

 AUC-12: Dead Code

Description:

The linked prices array is not utilized by the code of the Auction contract.

Recommendation:

As such, we advise its removal.

Alleviation:

The Axion development team has not provided a response to this exhibit yet.

https://github.com/Rock-n-Block/axion-contracts/blob/f2e654900f5023df3289426e0870d65efed06ea1/contracts/Auction.sol#L52
af://n11672
af://n11684
af://n11687
af://n11690

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

af://n11693
af://n11695
af://n11697
af://n11699
af://n11701
af://n11703
af://n11705
af://n11707
af://n11709
af://n11711
af://n11713

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

af://n11715
af://n11717
af://n11719

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 Findings
	 STA-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 STA-02: Declaration Naming Convention
	Description:
	Recommendation:
	Alleviation:

	 STA-03: Contract-Level Tight-Packing
	Description:
	Recommendation:
	Alleviation:

	 STA-04: Redundant Variable Initialization
	Description:
	Recommendation:
	Alleviation:

	 STA-05: Variable Mutability Optimization
	Description:
	Recommendation:
	Alleviation:

	 STA-06: Inexistent Access Control
	Description:
	Recommendation:
	Alleviation:

	 STA-07: Assignment Location
	Description:
	Recommendation:
	Alleviation:

	 STA-08: Unconventional Function Name
	Description:
	Recommendation:
	Alleviation:

	 STA-09: Unoptimized if-else Conditionals
	Description:
	Recommendation:
	Alleviation:

	 STA-10: Unreachable return Statement
	Description:
	Recommendation:
	Alleviation:

	 STA-11: Code Duplication
	Description:
	Recommendation:
	Alleviation:

	 STA-12: Inefficient Greater-Than Comparison w/ Zero
	Description:
	Recommendation:
	Alleviation:

	 SBS-01: Visibility Specifiers Missing
	Description:
	Recommendation:
	Alleviation:

	 SBS-02: Struct Tight-Packing
	Description:
	Recommendation:
	Alleviation:

	 SBS-03: Variable Mutability Optimization
	Description:
	Recommendation:
	Alleviation:

	 SBS-04: Redundant SafeMath Utilization
	Description:
	Recommendation:
	Alleviation:

	 SBS-05: Utilization of Return Variable
	Description:
	Recommendation:
	Alleviation:

	 SBS-06: Variable Data Location Optimization
	Description:
	Recommendation:
	Alleviation:

	 SBS-07: Redundant Array Loop Assignment
	Description:
	Recommendation:
	Alleviation:

	 SBS-08: Unoptimized if-else Conditionals
	Description:
	Recommendation:
	Alleviation:

	 SBS-09: Conditional Optimization
	Description:
	Recommendation:
	Alleviation:

	 SBS-10: Redundant SafeMath Utilization
	Description:
	Recommendation:
	Alleviation:

	 SBS-11: Unreachable return Statement
	Description:
	Recommendation:
	Alleviation:

	 SBS-12: Incorrect Error Message
	Description:
	Recommendation:
	Alleviation:

	 SBS-13: String Literal Representation
	Description:
	Recommendation:
	Alleviation:

	 SBS-14: Dangerous Conditional Execution
	Description:
	Recommendation:
	Alleviation:

	 SBS-15: Redundant Statement
	Description:
	Recommendation:
	Alleviation:

	 SBS-16: Redundant SafeMath Utilization
	Description:
	Recommendation:
	Alleviation:

	 SBS-17: Unconventional Loop Logic
	Description:
	Recommendation:
	Alleviation:

	 SBS-18: Multiple External Getter Calls
	Description:
	Recommendation:
	Alleviation:

	 SBS-19: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 SBS-20: Inefficient Greater-Than Comparison w/ Zero
	Description:
	Recommendation:
	Alleviation:

	 TOK-01: Mutability Specifiers Missing
	Description:
	Recommendation:
	Alleviation:

	 TOK-02: Unsanitized Input
	Description:
	Recommendation:
	Alleviation:

	 TOK-03: Requisite Value of ERC-20 transferFrom() Call
	Description:
	Recommendation:
	Alleviation:

	 TOK-04: Misleading init Function Prefix
	Description:
	Recommendation:
	Alleviation:

	 TOK-05: Incorrect require Check
	Description:
	Recommendation:
	Alleviation:

	 TOK-06: Inefficient Greater-Than Comparison w/ Zero
	Description:
	Recommendation:
	Alleviation:

	 TOK-07: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 TOK-08: Declaration Naming Convention
	Description:
	Recommendation:
	Alleviation:

	 NSP-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 NSP-02: Redundant Variable Initialization
	Description:
	Recommendation:
	Alleviation:

	 NSP-03: require Order
	Description:
	Recommendation:
	Alleviation:

	 NSP-04: Inefficient Greater-Than Comparison w/ Zero
	Description:
	Recommendation:
	Alleviation:

	 NSP-05: Requisite Value of ERC-20 transferFrom() Call
	Description:
	Recommendation:
	Alleviation:

	 NSP-06: Variable Mutability Optimization
	Description:
	Recommendation:
	Alleviation:

	 NSP-07: Inexistent Access Control
	Description:
	Recommendation:
	Alleviation:

	 FSP-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 FSP-02: Calculation Optimization
	Description:
	Recommendation:
	Alleviation:

	 FSP-03: Variable Mutability Optimization
	Description:
	Recommendation:
	Alleviation:

	 FSP-04: Amount Inaccuracy
	Description:
	Recommendation:
	Alleviation:

	 FSP-05: Duplicate External Calls
	Description:
	Recommendation:
	Alleviation:

	 FSP-06: Inefficient Greater-Than Comparison w/ Zero
	Description:
	Recommendation:
	Alleviation:

	 BPD-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 BPD-02: Calculation Remainder
	Description:
	Recommendation:
	Alleviation:

	 BPD-03: Unconventional Logic
	Description:
	Recommendation:
	Alleviation:

	 BPD-04: Variable Mutability Optimization
	Description:
	Recommendation:
	Alleviation:

	 BPD-05: Utilization of Return Variable
	Description:
	Recommendation:
	Alleviation:

	 AUC-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 AUC-02: Redundant Variable Initialization
	Description:
	Recommendation:
	Alleviation:

	 AUC-03: Redundant Conditional
	Description:
	Recommendation:
	Alleviation:

	 AUC-04: Double Payout
	Description:
	Recommendation:
	Alleviation:

	 AUC-05: Conditional Optimization
	Description:
	Recommendation:
	Alleviation:

	 AUC-06: Declaration Naming Convention
	Description:
	Recommendation:
	Alleviation:

	 AUC-07: Inefficient Greater-Than Comparison w/ Zero
	Description:
	Recommendation:
	Alleviation:

	 AUC-08: Storage of _msgSender() to Memory
	Description:
	Recommendation:
	Alleviation:

	 AUC-09: Variable Mutability Optimization
	Description:
	Recommendation:
	Alleviation:

	 AUC-10: Inexistent Access Control
	Description:
	Recommendation:
	Alleviation:

	 AUC-11: Redundant Type-Casting
	Description:
	Recommendation:
	Alleviation:

	 AUC-12: Dead Code
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Gas Optimization
	Mathematical Operations
	Logical Issue
	Control Flow
	Volatile Code
	Data Flow
	Language Specific
	Coding Style
	Inconsistency
	Magic Numbers
	Compiler Error
	Dead Code

