

Customer: Axion
Date: September 3rd, 2020

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Axion
Type Token, auction, tokenswap, staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/Rock-n-Block/axion-contracts

Commit 87afb419b029ea4b58508fd59a4f6163f94c61da
Timeline AUGUST 31, 2020 – SEPTEMBER 03, 2020
Changelog 03RD SEP 2020 - Initial Audit

Table of contents

Table of contents... 3

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 6

AS-IS overview.. 6

Audit overview... 14

Conclusion... 16

Disclaimers.. 17

Introduction

Hacken OÜ (Consultant) was contracted by Axion (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer`s smart contract and its code review conducted between
August 31st, 2020 – September 03rd, 2020.

Scope

The scope of the project is smart contracts in the repository:
Audit Repository
https://github.com/Rock-n-Block/axion-contracts
Commit 87afb419b029ea4b58508fd59a4f6163f94c61da

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Data Consistency

▪ Deployment Consistency

▪ Repository Consistency
Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, Customer`s smart contracts have high
and medium vulnerabilities that should be fixed.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

During the audit, we found 3 high, 6 medium, and 6 low severity
issues and a bunch of code style issues.

Graph 1. The distribution of vulnerabilities.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

High
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

Medium

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Low
Medium-level vulnerabilities are important to fix;
however, they can’t lead to assets loss or data
manipulations.

Informational
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets, that can’t have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can’t affect smart contract
execution and can be ignored.

AS-IS overview

Token.sol

Token imports ERC20.sol, AccessControl.sol, SafeMath.sol from
OpenZeppelin, and IToken.sol from the project.

Token inherits IToken, ERC20, and AccessControl.

Token is a basic ERC20 token with the possibility to swap from
another address. Swap is allowed only from a single address with
a setter role. If the swap is finished, there will be 6 addresses
with the possibility to mint any sum of tokens.

Contract Token has 5 fields and constants:

▪ bytes32 private constant MINTER_ROLE =
keccak256("MINTER_ROLE");

▪ bytes32 private constant SETTER_ROLE =
keccak256("SETTER_ROLE");

▪ address private swapToken – stores an address of a token that
will be swapped.

▪ bool private swapIsOver – indicates whether swap is finished
or no.

▪ mapping(address => uint256) private swapTokenBalanceOf –
stores swap balances of specified addresses.

Contract Token has 2 modifiers:

▪ onlyMinter() – checks if the function caller
has a minter role.

▪ onlySetter()– checks if the function caller has a setter
role.

Contract Token has 12 functions:

▪ constructor – sets token name, symbols, address of a token
to swap from and an address with the setter role.

▪ init – an external function that can only be called by the
setter. Used to specify a list of addresses with the minter
role and to finish swap process.

▪ getMinterRole – an external pure function that returns a
value used as a key for the minter role.

▪ getSetterRole – an external pure function that returns a
value used as a key for the setter role.

▪ getSwapTOken – an external pure function that returns the
swap token address.

▪ getSwapTokenBalanceOf – an external view function used to
get balance of swap tokens of a specified address.

▪ initDeposit – an external function that can only be called
by the setter. Used to deposit tokens for swap and to increase
swapTokenBalance of a caller.

▪ initWithdraw – an external function that can only be called
by the setter. Used to withdraw swap tokens and to decrease
swapTokenBalance of a caller.

▪ initSwap – an external function that can only be called by
the setter. Used to swap all tokens of a caller. As a result,
the caller will receive new tokens in 1 to 1 proportion with
swap tokens.

▪ mint – an external function that can only be called by the
minter. Used to mint tokens.

▪ burn – an external function that can only be called by the
minter. Used to mint tokens.

▪ getNow – an external view function used to fetch the current
timestamp.

Auction.sol

Auction imports IERC20.sol, AccessControl.sol,
SafeMath.sol from OpenZeppelin and IToken.sol,
IUniswapV2Router02.sol, IAuction.sol from the project.

Auction inherits IAuction and AccessControl.

Auction is a contract that allows one to make a bet in ETH and to
withdraw this bet in Tokens. In a case when a ref provided during
the bet, referral bonuses are received by both sides. The contract
works as an exchange with max exchange rate obtained from the
uniswap.

Contract Auction has 15 fields and constants:

▪ bytes32 public constant MANAGER_ROLE =
keccak256("MANAGER_ROLE");

▪ bytes32 public constant CALLER_ROLE =
keccak256("CALLER_ROLE");

▪ mapping(uint256 => AuctionReserves) public reservesOf –
stores reserve sum of Auctions.

▪ mapping(address => uint256[]) public auctionsOf – stores
auction id’s where an address owner participated at.

▪ mapping(uint256 => mapping(address => UserBet)) public
auctionBetOf – stores auction bets of an address owner.

▪ mapping(uint256 => mapping(address => bool)) public
existAuctionsOf – identifies whether an address participated
in an auction or no.

▪ uint256 public start – the contract deploy timestamp.

▪ uint256 public currentAuctionId – a current auction id.

▪ uint256 public stepTimestamp – delay between auction steps.

▪ uint256 public uniswapPercent – bonus for swapping with
uniswap.

▪ address public mainToken – token contract address.

▪ address public staking – staking contract address. This
address is used to send tokens from uniswap

▪ address payable public uniswap – uniswap contract address.

▪ address payable public recipient – address of the wallet
where ETH is transferred during betting.

▪ bool public init_ - stores init status.

Contract Auction has 2 modifiers:

▪ onlyCaller() – checks if the function caller has caller role.

▪ onlyManager()– checks if the function caller has manager
role.

Contract Auction has 2 data structures:

▪ AuctionReserves – used to store reserves of auction step.

▪ UserBet – used to store a user bet for an auction step.

Contract Auction has 15 functions:

▪ constructor – sets init_ to false.

▪ init – an external function used to initialize values of
start, stepTimestamp, uniswapPercent, mainToken, staking,
uniswap and recipient fields. The function sets MANAGER_ROLE
to the _manager address and CALLER_ROLE to the _nativeSwap,
_foreignSwap and _staking addresses. Can be called only once.

▪ auctionsOf – a public view function used to fetch all
auctions where a specified address participated at.

▪ setUniswapPercent – an external function used to set uniswap
percent value. Can be executed only from an address with the
manager role.

▪ bet – an external payable function used to make a bet in the
latest auction.

▪ withdraw – an external function used to withdraw tokens after
an auction step end.

▪ callIncomeDailyTokensTrigger – an external function used to
set a reserve tokens sum of a current auction. Can be executed
only from an address with the caller role.

▪ callIncomeWeeklyTokensTrigger – an external function used to
set a reserve tokens sum of a weekly auction. Can be executed
only from an address with the caller role.

▪ calculateNearestWeeklyAuction – a public view function used
to calculate a weekly auction step.

▪ calculateStepsFromStart – a public view function used to
calculate a current auction step.

▪ _changePayoutWithUniswap – an internal view
function used to calculate payout sum. In a case when the
payout sum is greater than a value received from the uniswap,
uniswap value will be returned as a result.

▪ _calculatePayout – an internal function used to calculate a
payout for a specified auction and sum.

▪ _calculateRecipientAndUniswapAmountsToSend – a private
function used to calculate sums of ETH that goes to the
recipient and uniswap addresses during the betting process.
The recipient receives 20% the sum, the uniswap receives 80%
of the sum.

▪ _calculateRefAndUserAmountsToMint – a private pure function
used to calculate referral bonuses during the withdrawal
process. A referrer receives 10% of extra tokens, and a user
receives 20% of extra tokens.

▪ _swapEth – a private function used to send ETH to the uniswap
wallet during betting.

NativeSwap.sol

NativeSwap imports IERC20.sol, SafeMath.sol from OpenZeppelin and
IToken.sol, IAuction.sol from the project.

NativeSwap is a contract that allows swapping tokens. The sum of
the main token depends on steps passed from the contract deploys
date.

Contract NativeSwap has 7 fields and constants:

▪ uint256 private start – the contract deploy timestamp.

▪ uint256 private stepTimestamp – delay between auction steps.

▪ address private swapToken – an address of a token to swap
from.

▪ address private mainToken – an address of the main token.

▪ address private dailyAuction – an address of the Auction
contract.

▪ bool public init_ - stores init status.

▪ mapping(address => uint256) private swapTokenBalanceOf –
stores balances of swap token of specified address.

Contract NativeSwap has 13 functions:

▪ constructor – sets init_ to false.

▪ init – an external function used to set values of
stepTimestamp, swapToken, mainToken, dailyAuction and start
fields. Can be executed only once.

▪ getStart – an external view function used to fetch the
contract init timestamp.

▪ getStepTimestamp – an external view function used to fetch
the stepTimestamp value.

▪ getSwapToken – an external view function used to fetch the
swap token address.

▪ getMainToken – an external view function used to fetch the
main token address.

▪ getDailyAuction – an external view function used to fetch
the auction address.

▪ getSwapTokenBalanceOf – an external view function used to
fetch balance of the swap token of a specified address.

▪ deposit – an external function used to deposit swap tokens.
Should be called only if an allowance is set on the swap
token contract.

▪ withdraw – an external function used to withdraw swap tokens.

▪ swapNativeToken – an external function used to swap tokens
of a function caller.

▪ readSwapNativeToken – an external view function used to
calculate swap sum.

▪ _calculateDeltaPenalty – an internal view function used to
calculate swap penalty.

Staking.sol

Staking imports IERC20.sol, AccessControl.sol, SafeMath.sol from
OpenZeppelin and IToken.sol, IStaking.sol, IAuction.sol,
ISubBalances.sol from the project.

Staking inherits IStaking and AccessControl.

Staking is a contract used to stake tokens. Staking rates are
calculating depending on the time passed after a stake start.

Contract Staking has 15 fields and constants:

▪ uint256 private _sessionsIds – total number of stakes.

▪ bytes32 public constant EXTERNAL_STAKER_ROLE =
keccak256("EXTERNAL_STAKER_ROLE");

▪ address public mainToken – token address.

▪ address public auction – auction address.

▪ address public subBalances – address of the ISubBalances
contract.

▪ uint256 public shareRate – share rate. Used to calculate
shares amount.

▪ uint256 public sharesTotalSupply – total shares.

▪ uint256 public lastMainTokenBalance – snapshot of the token
total supply on a time of last payout function call.

▪ uint256 public nextPayoutCall – time when a next payout
allowed.

▪ uint256 public stepTimestamp – delay between steps.

▪ uint256 public startContract – contract deploy timestamp.

▪ bool public init_ - stores init status.

▪ mapping(address => mapping(uint256 => Session)) public
sessionDataOf – stakes storage.

▪ mapping(address => uint256[]) public sessionsOf – stakes of
specific address.

▪ Payout[] public payouts – list of payouts.

Contract Staking has 2 modifiers:

▪ onlyExternalStaker () – checks if the function caller has
external staker role.

Contract Staking has 2 data structures:

▪ Payout – used to store payout information.

▪ Session – used to store stake information.

Contract Staking has 15 functions:

▪ constructor – sets init_ to false.

▪ init – an external function used to initialize values of
mainToken, auction, subBalances, shareRate,
lastMainTokenBalance, stepTimestamp, nextPayoutCall and

startContract fields. The function sets
EXTERNAL_STAKER_ROLE to the _externalStaker address. Can be
called only once.

▪ sessionsOf – an external view function used to fetch all
stakes of a specified address.

▪ stake – an external function used to stake tokens.

▪ externalStake – an external function used to stake tokens on
behalf of a specified address. Can be executed only by an
address with the external staker role.

▪ unstake – an external function used to finish specified
staking of a message sender. There’re 4 options:

o early – finish stake with an early penalty.

o in time – finish stake with bonus. Applies on a date of
the stake end plus 13 days.

o late – finish stake with a late penalty. Applies
between 14 and 713 days after a stake end.

o Nothing – applies after 713 days of staking end date.

▪ readUnstake – an external view function used to calculate an
unstake sum of a specified account and staking id.

▪ makePayout – an external function used to initiate new
payout.

▪ readPayout – an external view function used to calculate a
payout sum.

▪ _getPayout – an internal function used to process payout.
Tokens are minted for the contract address during the payout
process.

▪ _getStakersSharesAmount – an internal view function used to
calculate staker shares sum.

▪ _getShareRate – an internal view function used to fetch stake
share rate.

▪ getNow0x – an external view function used to fetch a current
block timestamp.

Audit overview

 Critical

 High

1. To avoid Token total supply manipulation, it’s recommended
to limit the number of addresses with a minter role.
Currently, the init function of the Token contract expects 6
addresses that will have this role, whether the repository
have only 3 contracts that requires the minter role.

2. The externalStake function of the Staking contract can
perform stake for any account without approval. Such behavior
can not consider as safe because tokens are burned from the
account.

3. The unstake function of the Staking contract has reentrancy
vulnerability. It’s recommended to store shares as local
variable and set
sessionDataOf[msg.sender][sessionId].shares = 0 in the
beginning of the function.

 Medium

1. It’s recommended to move a value of the stepTimestamp to
constant because it’s implied that its value should always
be equal to 1 day.

2. It’s recommended to validate a result value of the
transferFrom function in the deposit function of the
NativeSwap contract.

3. The _getShareRate function of the Staking contract uses
hardcoded value of the token decimals. This value should be
fetched from the token contract.

4. Functions unstake and readUnstake of the Staking contract
are overcomplicated and should be split to separate
functions.

5. _getShareRate and _getStakersSharesAmount function of the
Staking contract has “magic numbers” that should be moved to
a named constants.

6. The unstake function of the Staking contract should have if
– else statements instead of simple if statements.

 Low

1. To avoid extra type casts, field swapToken of
the Token contract can be specified as IERC20 instead of
address.

2. As soon as all swap functions of the Token contract can only
be called from the setter address, swap balance can be stored
as uint256 type instead of mapping type.

3. Validation should be moved out of the cycle in the init
function of the Token contract.

4. To decrease code duplication, the swapNativeToken function
of the NativeSwap contract should use readSwapNativeToken
function to get swap sum.

5. The readUnstake function of the Staking contact does not have
unconditional return statement. It’s recommended to add the
default one.

6. stake and externalStake functions of the Staking contract
have common code that can be moved to separate function to
decrease code duplication.

 Lowest / Code style / Best Practice

1. Function _daysFromDate, timestampFromDateTime, _daysToDate
and timestampToDate have a lot of “magic” numbers that should
be moved to named constants.

2. Function getCirculation does not return any result.
updateCirculationValue is more suitable name.

3. A lot of other code-style issues can be found by running any
static code analyzer specified in the Executive Summary
section.

Conclusion

Smart contracts within the scope was manually reviewed and
analyzed with static analysis tools. For the contract, high level
description of functionality was presented in AS-IS overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 3 high, 6 medium, and 6 low severity
issues during audit. High severity issues can lead to token supply
manipulations or to unwilling funds lock. It’s recommended to fix
all those issues.

Category Check Item

Code review ▪ Style guide violation

▪ Data Consistency
Functional review ▪ Token Supply manipulation

▪ User Balances manipulation

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to: cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of
the code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status, or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure the security of smart
contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have own vulnerabilities that can lead
to hacks. Thus, the audit can’t guarantee explicit security of
the audited smart contracts.

